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Abstract

Recent advances in network modelling techniques have enabled the study of neurological 

disorders at a whole-brain level based on functional connectivity inferred from resting-state 

magnetic resonance imaging (rs-fMRI) scan possible. However, constructing a directed effective 

connectivity, which provides a more comprehensive characterization of functional interactions 

among the brain regions, is still a challenging task particularly when the ultimate goal is to 

identify disease associated brain functional interaction anomalies. In this paper, we propose a 

novel method for inferring effective connectivity from multimodal neuroimaging data for brain 

disease classification. Specifically, we apply a newly devised weighted sparse regression model on 

rs-fMRI data to determine the network structure of effective connectivity with the guidance from 

diffusion tensor imaging (DTI) data. We further employ a regression algorithm to estimate the 

effective connectivity strengths based on the previously identified network structure. We finally 

utilize a bagging classifier to evaluate the performance of the proposed sparse effective 

connectivity network through identifying mild cognitive impairment from healthy aging.

1 Introduction

Mild cognitive impairment (MCI), as the intermediate state of cognitive function between 

normal aging and dementia, has attracted a great deal of attention recently due to its high 

progression rate to dementia. More than 50% of individuals with MCI progress to dementia 

within 5 years [5]. MCI is thus an appropriate target for early diagnosis and intervention of 

Alzheimer’s disease (AD). However, its mild symptoms cause most existing computer-aided 

diagnosis frameworks perform relatively inferior with low sensitivity [7].

Recently, neuroimaging-based techniques have been shown to be a powerful tool for 

predicting the progression of MCI to AD [12]. For example, functional connectivity inferred 

from resting-state magnetic resonance image (rs-fMRI) data can reflect temporal 
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interactions between distinct region-of-interest (ROI) in the brain [13]. However, functional 

connectivity conveys only the pairwise correlation [4], ignoring the directed causal influence 

between ROIs [10]. Such analysis is susceptible to noise due to the low frequency (< 0.1 Hz) 

spontaneous fluctuation of blood oxygen level dependent (BOLD) signals, thus may not 

accurately reveal the brain states at rest. This limits the capability of correlation-based 

functional connectivity to provide an adequate and complete account of the interactions 

among multiple brain regions. As an alternative, effective connectivity, has been employed 

to reflect the causal interactions between a pair of ROIs [4].

Most of the biological networks are intrinsically sparse [3]. Sparse modeling methods such 

as the least absolute shrinkage and selection operator (Lasso) have been applied to construct 

sparse brain connectivity networks [2]. However, Lasso which is normally applied on a 

single modality of neuroimaging data (e.g., rs-fMRI), inevitably ignores the important 

complementary information from other modalities. Additionally, sparse models through 

penalizing the linear regression are mainly focused on the resulted squared loss, ignoring the 

relations between the signals of different time points, which are of great importance for 

revealing the characteristics of dynamic model. To resolve those issues, we proposed, in this 

paper, an Ultra-Weighted-Lasso approach to construct a more accurate sparse effective 

connectivity network and used it for MCI classification. Specifically, the proposed approach 

was a modified version of Lasso to incorporate structural connectivity information derived 

from diffusion tensor imaging (DTI) data for deriving the brain network structure. The 

regression loss of the proposed modified Lasso model involves a term that conveys the 

relation between different time points, i.e., the derivative. In this way, a more accurate 

effective connectivity structure can be obtained. The connectivity strength of each edge in 

the identified network can then be inferred using an Ultra-Orthogonal-Forward regression 

(UOFR) model which also takes into consideration the derivatives of the signal. We seek to 

evaluate the capability of this new effective connectivity network for improving the MCI 

classification performance.

2 Materials and Methodology

A dataset with 27 participants (10 MCI and 17 healthy controls) was used in this study. 

There are no significant differences in terms of age, gender, years of education, and Mini 

Mental State Examination (MMSE) score between MCI and healthy subjects. Both rs-fMRI 

and DTI scans were acquired using a 3 Tesla (Signa EXCITE, GE) scanner with following 

parameters: rs-fMRI: TR/TE = 2000/32 ms, flip angle = 77°, imaging matrix = 64 × 64, 

FOV = 256 × 256 mm2, voxel thickness = 4 mm, 34 slices, and 150 volumes; DTI: b=0 and 

1000 s/mm2, flip angle = 90°, TR/TE = 17000/78 ms, imaging matrix = 128 × 128, FOV = 

256 × 256 mm2, voxel thickness = 2 mm, and 72 continuous slices. The same scanner was 

used to acquire the T1-weighted anatomical MRI images using the following parameters: TE 

= 2.976 ms, TR = 7.460 ms, flip angle = 12°. The imaging matrix = 256 × 224 with a 

rectangular FOV of (256 × 256 mm2), voxel thickness = 1 mm, and 216 continuous slices. 

Subjects were instructed to keep eyes open and stare at a fixation cross in the middle of the 

screen to prevent them falling into sleep and avoid the saccade-related activation due to 

eyes-closed during scanning.
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For DTI data, all images were first parcellated into 90 regions based on the automated 

anatomical labeling (AAL) template [9] using a deformable DTI registration algorithm. 

Whole-brain streamline fiber tractography was then performed on each image with minimal 

seed point fractional anisotropy (FA) of 0.45, stopping FA of 0.25, minimal fiber length of 

20 mm, and maximal fiber length of 400 mm. The number of fibers passing through each 

pair of regions was counted and two regions were considered as anatomically connected if 

fibers passing through their respective masks were present. For rs-fMRI data, standard 

preprocessing procedure was carried out using the statistical parametric mapping (SPM8) 

software, including the removal of the first 10 volumes, slice timing correction, head-motion 

artifact correction, regression of nuisance signals (ventricle, white matter, and 6 head-motion 

parameters), signal de-trending, and band-pass filtering (0.0250.1 Hz). All fMRI images 

were coregistered to their own T1-weighted image before parcellated into 90 regions based 

on AAL template.

2.1 Effective Connectivity Inference via Ultra-Weighted-Lasso

Suppose we have M ROIs, the mean time series of i-th ROI for the n-th subject, yi, can be 

regarded as a response vector that can be estimated as a linear combination of the mean time 

series of other ROIs as

(1)

where ei is the noise, yi = [yi(1), yi(2), ⋯, yi(N)]T is the time series with N being the number 

of time points, Ai = [y1, y2, ⋯, yi−1, yi+1, ⋯, yM] is the data matrix of the i-th ROI, and αi = 

[α1, ⋯, αi−1, αi+1, ⋯, αM]T is the weight vector. The solution of the l1-norm regularized 

optimization problem results in a sparse weight vector, αi, which can be computed as 

follows:

(2)

where λ > 0 is the regularization parameter, controlling the sparsity of the model. Note that 

the first term in Eq. (2) uses only the least squares loss of the regression result, ignoring the 

relations between different time points in signal y, i.e., derivative. To resolve the issue, the 

Eq. (2) can be modified as

(3)

where Dly is a measurement of the l-order weak derivative of the signal y and satisfies
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(4)

where the test function  is smooth and exhibits the properties of compact 

support within [0, T]. Thus, for simplicity, Dly in Eq. (4) can be replaced by

(5)

where τ is the time shift of the test function. Hence, we can obtain the model as

(6)

Please refer to [6] for more information about the detail discussion of both weak derivatives 

and test functions.

Additionally, it is notable that the Lasso model may produce a suboptimal estimation by 

inflicting the same penalization on every regressor. To resolve this issue, we can, on one 

hand, rely on the time series for the penalization adjustment of different regressors using 

adaptive-Lasso [14]. On the other hand, since the structural connectivity is highly correlated 

with functional connectivity [4], with a stronger structural connectivity indicating a higher 

opportunity of the functional connectivity, we opt, in this paper, to utilize the structural 

connectivity derived from DTI to modify the penalization weight for the rs-fMRI time series 

as

(7)

where wi(j) is the penalization weight for the j-th regressor. Let Si,j be the structural 

connectivity between the i-th ROI and the j-th ROI, wi(j) can then be defined as

(8)

where ni is the total number of structural connectivity for the i-th ROI, and 

 is the proportion of structural connectivity between i-th ROI and j-th 

ROI to the sum of connectivity of i-th ROI. Equation (8) indicates that for a pair of brain 

regions that with a strong structural connectivity, there is high probability that an effective 

connectivity exists between them and a small penalization should be imposed. The 
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regression model, which is referred as Ultra-Weighted-Lasso, incorporates the weak 

derivatives and penalization to derive a more accurate sparse effective connectivity structure 

based on the resulted α.

2.2 Effective Network Construction via UOFR

The non-zero element αi(j) in αi indicates the existence of effective influence the j-th ROI 

exerting on the i-th ROI. Herein, an algorithm of Ultra Orthogonal Forward Regression 

(UOFR) which takes into consideration the derivatives, is used to calculate the effective 

connectivity strength. For the time series yi and {yj | αi(j) > 0; j ∈ [1, 2, ⋯, M]}, the series 

are firstly extended as 

, which is 

referred as ultra time series. Then, a forward orthogonalization is applied to the ultra time 

series {ỹj | αi(j) > 0; j ∈ [1, 2, ⋯, M]} to calculate the in error reduction ratio (ERR) as [6]

(9)

where < · > is the inner product. For each round of orthogonalization, the maximum ERRi, 

i.e., ERRi(j), which reflects the effect the j-th ROI exerting on the i-th ROI, is referred as the 

effective connectivity strength of gi,j, which reflects the effect the j-th ROI exerting to the i-
th ROI. Note that gi,j is nonnegative and varies from 0 to 1.

2.3 Feature Extraction

Weighted-clustering coefficient (GCi) and betweenness centrality (GBi) are extracted from 

the constructed sparse effective connectivity network for the MCI classification and are 

defined as

(10)

where gi,j denotes the effective connectivity from the i-th ROI to the j-th ROI, |Δi| denotes 

the number of ROIs that are adjacent to the i-th ROI, and  is the number of bilateral 

edges between the i-th ROI and its neighbors, respectively.

(11)

where σj,k denotes the total number of shortest paths from the j-th ROI to the k-th ROI, and 

σj,k(i) is the number of those paths that pass through the i-th ROI.
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2.4 Classification and Evaluation

Decision tree (DT) with a bagging strategy [1] and leave-one-out cross-validation (LOOCV) 

is used as classifier for MCI classification. Specifically, for Ns total number of subjects 

involved, one is first left out for testing, and the remaining Ns − 1 are used for feature 

selection and DT construction, where Ns − 1 decision trees (DTs) are constructed using 

different Ns − 2 training subjects and validated using the second left out validation subject. 

The predicated label of the first left out testing subject is obtained based on the majority 

voting of the constructed Ns − 1 DTs. The process is repeated for Ns times, each time left 

out different subject as the testing subject. Finally, the overall classification performance is 

obtained by comparing the predicted labels of all subjects with the ground truth.

3 Experimental Results

The constructed effective connectivity maps of one healthy control (NC) and one MCI 

patient are shown in Fig. 1(a)–(b), respectively. The constructed effective networks are 

sparse and asymmetric, indicating that the interaction within a pair of ROIs, i.e., gi,j and gj,i 

are not restricted to be equal. The sums of ERR for effective connectivity of each ROI for 

corresponding MCI and NC subjects are shown in Fig. 1(c)–(d). Almost all ROIs show a 

sum larger than 0.95, indicating that the rs-fMRI time-series of an ROI can be well 

represented by the time series of other selected. It also assure the convergence of the 

network.

In this work, the proposed sparse effective connectivity network based framework is 

compared with other related works using the same dataset, including the framework that 

uses single modality data, either DTI or rs-fMRI data, separately [12], and the framework 

that directly fuses features from multiple modalities at the feature level (Direct) [12]. We 

further compared the performance of our proposed framework to the results of the Weighted-

Lasso with OFR procedure (Weighted-Lasso-OFR) which omits the derivative information, 

and the results of Ultra-Lasso with UOFR procedure (Ultra-Lasso-UOFR) which without 

penalization weights from DTI-based structural connectivity. The LOOCV classification 

results of all compared frameworks are summarized in Table 1. The proposed framework, 

which combines the information from multimodal neuroimaging data and the Ultra-

Weighted-Lasso and the UOFR approaches by yielding a cross-validation accuracy of 

96.3%, which is at least 7.4% improvement compared to the second best performed 

framework (Direct). Furthermore, it also outperforms all other frameworks in terms of the 

rest of the computed statistical measurements. Particularly, an area of 0.994 under the 

receiver operating characteristic curve (AUC) demonstrates an excellent generalization 

power of our proposed Sparse Effective Connectivity for MCI Identification 305 framework. 

Our method achieved a gain of at least 11% in accuracy while requiring only extra 15% 

more of computation time if compared to the single-modal Ultra-Lasso-UOFR and 

multimodal Weighted-Lasso-OFR approaches, implying its efficacy in accurate inference of 

effective connectivity.

The most discriminant regions selected by our framework are mainly located in the frontal 

lobe (e.g., superior frontal gyrus [13]), the temporal lobe (e.g., temporal pole [8]), the 

occipital lobe (e.g., middle occipital gyrus and superior occipital gyrus [8]) and other 
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regions such as cingulum gyri [11,13], hippocampus [8], and thalamus [8], in line with those 

reported in the AD/MCI literature. The selected most discriminant regions are graphically 

displayed in Fig. 2.

4 Discussions and Conclusion

In this study, we propose an Ultra-Weighted-Lasso-UOFR based effective connectivity 

network inference method using multimodal DTI and rs-fMRI data, and explore its 

diagnostic power for distinguishing MCI patients from healthy subjects. In this framework, 

multimodal integration is achieved via an Ultra Weighted-Lasso method where weighted 

penalties derived from the DTI data are incorporated into a sparse regression procedure for 

identifying the topology of effective connectivity network. This method provides a more 

accurate detection of the high dimensional effective interaction architecture among brain 

regions via the returned non-zero coefficients. Additionally, effective connectivity strength is 

estimated using an orthogonal forward regression procedure based on the identified network 

structure. Experimental results on MCI classification demonstrate the superiority of the 

constructed sparse effective connectivity network over other competing methods. In 

conclusion, the proposed approach sheds a light on integrating information from multimodal 

neuroimaging data to infer sparse effective connectivity for brain disease diagnosis.
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Fig. 1. 
Effective connectivity maps based on Ultra-Weighted-Lasso and UOFR for one (a) MCI and 

one (b) NC subjects. Sums of ERR for effective connectivity of each ROI for the 

corresponding (c) MCI and (d) NC subjects.
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Fig. 2. 
Most discriminant regions selected during MCI classification
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