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Abstract

Inferring effective brain connectivity network is a challenging task owing to perplexing noise 

effects, the curse of dimensionality, and inter-subject variability. However, most existing network 

inference methods are based on correlation analysis and consider the datum points individually, 

revealing limited information of the neuron interactions and ignoring the relations amongst the 

derivatives of the data. Hence, we proposed a novel ultra group-constrained sparse linear 

regression model for effective connectivity inference. This model utilizes not only the discrepancy 

between observed signals and the model prediction, but also the discrepancy between the 

associated weak derivatives of the observed and the model signals for a more accurate effective 

connectivity inference. What’s more, a group constraint is applied to minimize the inter-subject 

variability and the proposed modeling was validated on a mild cognitive impairment dataset with 

superior results achieved.

1 Introduction

Mild cognitive impairment is considered as the clinical stage between normal aging and 

dementia. MCI patients suffer from a cognitive decline that does not interfere notably with 

activities of daily living. Anatomical and physiological researches suggest that cognitive 

process is greatly associated with the interactions among distributed brain regions [1].

Constructing functional and effective brain connectivity from neuroimaging data holds great 

promise for understanding the functional interactions between brain activities. Recently, 

many connectivity modeling approaches based on functional magnetic resonance imaging 

(fMRI) have been proposed and employed disease for identification, e.g., Alzheimer’s 

disease (AD) and MCI from normal controls (NCs).

Recent works demonstrated that sparse learning techniques provide excellent performances 

in a series of neuroimaging applications [2, 3]. The use of certain sparsity connectivity 
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modeling can elucidate robust connections from a set of noisy connections and increase the 

discriminative power for disease diagnosis. Lee et al. [2] adopted a least absolute shrinkage 

and selection operation (Lasso) to construct the functional connectivity network. Wee et al. 

[3] introduced Group Lasso based connectivity network by adopting a l2,1 regularizer to the 

original Lasso. Both methods achieved a relatively high accuracy in disease classification. 

However, these methods consider only the datum points (brain regions in our case) 

individually, ignoring the inter-datum connections which are represented by the derivatives 

of the signals. The absence of interconnections information may lead to overfitting problems 

in effective connectivity network modelling.

To address this issue, in this paper, we presented a novel sparse linear regression model to 

infer effective connectivity network and used it for accurate identification of MCI patients 

from NCs. Specifically, ultra-fMRI time series were first generated by concatenating the 

original fMRI signal and its corresponding weak derivatives. The structure of effective 

connectivity network was then determined using an ultra-group Lasso method. Based on this 

structure, an ultra-orthogonal forward regression (UOFR) algorithm was employed to 

estimate the strength of each effective connection. The proposed method was applied for 

MCI identification and superior classification performance was achieved.

2 Materials and Methodology

2.1 Data Acquisition and Preprocessing

The present study involved 61 participants (28 MCI patients and 32 controls) who were 

diagnosed based on a battery of general neurological examination, collateral and subject 

symptom, neuropsychological assessment evaluation, and functional capacity reports. Data 

acquisition was performed using a 3 T Siemens TRIO scanner. One-hundred and eighty 

resting-state fMRI volumes of each participant were collected with the following 

parameters: TR = 3000 ms, TE = 30 ms, acquisition matrix = 74 74, 45 slices, and voxel 

thickness = 3 mm.

The preprocessing pipeline including slice time correction, head motion correction, spatial 

smoothing, and template wrapping was performed using Statistical Parametric Mapping 8 

(SPM8) software package. It should be noted that nuisance signals were band-pass filtered 

within frequency interval [0.01 ≤ f ≤ 0.08 Hz]. The mean fMRI time series of each region-

of-interest according to AAL atlas was then computed for each subject by averaging the 

fMRI time series over all voxels in each ROI.

2.2 Network Structure Detection via Ultra-group Lasso

Suppose there are M ROIs and N subjects, the mean time series of m-th ROI for n-th subject 

can be represented as ym
n = [ym

(n)(1); ym
n (2); …; ym

n (T)] with T being the number of time points in 

the time series. For each ROI, its mean time series ym
n  can be modeled the linear combination 

of time courses of other ROIs as
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ym
n = Am

n θm
n + em

n (1)

where Am
n = [y1

n, …, ym − 1
n , ym + 1

n , …, yM
n ] denotes a data matrix that includes all mean time 

series except for the m-th ROI, θm
n  and em

n  denote the weight vector and noise.

For a dynamic system, the datum points are time dependent and are connected between each 

other through the derivatives of time continuous functions. These interconnections convey 

many important characteristics of a dynamic system. However, the standard least squares 

criterion considers the datum points individually, discarding the connections among them. 

The absence of the information conveyed by these interconnections may lead to overfitting 

problems of dynamic systems [4]. To address this issue, an ultra-least squares (ULS) 

criterion was introduced by incorporating the weak derivatives into the least squares 

criterion. The weak derivatives Dly is defined in Sobolev space as

Dly(t) = ∫
[0, T]

y(t)Dlφ(t)dt = ( − 1)l∫
[0, T]

φ(t)Dly(t)dt (2)

for any test function φ(t) ∈ C0
∞([0, T]), which is smooth and possesses compact support on [0, 

T] [4]. In this study, the (m + 1)-th order B-spline functions were employed as the 

modulating functions. Then, the derivatives Dly can be redefined as

Dly(τ) = ∫
[τ, T0 + τ]

y(t)Dlφ(t − τ)dt, τ ∈ [0, T − T0] (3)

Based on the description above, the ULS criterion is defined as

JULS = ym
n − Am

n θm
n

2
2 + ∑l = 1

k Dlym
n − (DlAm

n )θm
n

2
2

(4)

where DlAm
n = [Dly1

n, …, Dlym − 1
n , Dlym + 1

n , …, DlyM
n ].

By concatenating the original signals and the weak derivatives together as 

y∼m
n = [ym

n ; D1ym
n ; D2ym

n ; ⋯; Dkym
n ], A

∼
m
n = [Am

n ; D1Am
n ; D2Am

n ; ⋯; DkAm
n ], the ULS criterion can be 

rewritten as
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JULS = y∼m
n − A

∼
m
n θm

n
2
2

(5)

which has the same form as the standard least squares criterion.

By applying the ULS criterion to the Lasso algorithm, we introduce the ultra-Lasso as

JUltra − Lasso = y∼m
n − A

∼
m
n θm

n
2
2

+ λ θm
n (6)

where λ > 0 is the regularization parameter controlling the ‘sparsity’ of the model, y∼m
n  is the 

ultra-version of the target signal, A
∼

m
n  represents the set of ultra-regressors and θm

n  is the 

regression parameter, respectively.

However, since the sparsity constraint in Lasso is applied at an individual level, the nonzero 

elements in θm
n  differ across subjects. This inevitably causes inter-subject variability which 

may influence further group analysis. To minimize the inter-subject variability and gain the 

same model structure for multiple subjects, a group constraint [3] was imposed into ultra-

Lasso as

JUGL = ∑ j = 1
n y∼m

j − A
∼

m
j θm

n
2
2

+ λ θm 2, 1 (7)

where θm = [θm
1 , θm

2 , ⋯, θm
N] and ||θm||2,1 is the summation of l2-norms of row vectors in θm. 

Specifically, the weights corresponding to certain parameters across different subjects are 

grouped together. This promotes a common connection topology, while in the meantime 

allows for variation of coefficient values between subjects. By employing the ultra-group 

Lasso, a subset of region-of-interests (ROIs) with nonzero weights is selected to be 

considered connecting with the target ROI.

2.3 Effective Connectivity Construction via UFOR

The coefficients θm estimated via the ultra-group Lasso can simply be regarded as the 

effective connectivity (connection weights) between ROI to construct an effective 

connectivity network. However, these estimated coefficients are unscaled and biased, and it 

may lead to difficult interpretation and analysis of the effective network. Thus, an UOFR 

algorithm [4] was employed to estimate the connectivity strength based on the structure 

detected by the ultra-group Lasso. Given the ultra-target signal y∼m
n  and candidate regressor 

dictionary Dm
n = {x∼i ∣ x∼i ∈ A

∼
m
n , θm

n (i) ≠ 0}, where x∼i = [yi
n; D1yi

n; D2yi
n; ⋯; Dkyi

n] represents 
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ultra-time series of ROIs selected via the ultra-group Lasso, the values of error reduction 

ratio (ERR) can be computed as

ERRi =
x∼i, y∼m

n 2

x∼i, x∼i y∼m
n , y∼m

n (8)

Regressor (defined as x̃max) with the greatest ERR was first removed from the dictionary 

Dm
n , and was regarded as the connection weight between the corresponding ROI and the 

target ROI. The remaining regressors in Dm
n  were then orthogonalized with x̃max using a 

Gram-Schmidt algorithm. This process was repeated until the regressor dictionary Dm
n

becomes empty. All the maximum ERR values were arranged into an effective connectivity 

matrix of size M × M for M-dimensional ROIs, where the matrix contains every possible 

effective connectivity of ROIs pairs [5].

2.4 Feature Selection and Classification

To characterize the brain networks with a small number of neurobiologically meaningful and 

easily computable measures, topological properties, such as out-degree and in-degree, 

weighted-clustering, betweenness centrality, were extracted as features from the connectivity 

matrix following [6]. In order to ensure that all features were within the same scale and to 

minimize bias in feature selection, the feature vectors are scaled to the range [0, 1] 

individually across subjects.

After features extraction, a feature selection method based on the importance scores from a 

standard random forest was adopted. The importance scores have been shown to select a 

highly reduced subset of discriminative features and was detailed in [7] and we briefly 

outline it here. At each node τ within the binary trees T of the random forest, the Gini 

impurity measures how well a potential split is separating the samples of the two classes in 

this particular node [7]. It is defined and calculated as

G(τ) = 1 − p1
2 − p0

2 (9)

where pk =
nk
n  denotes the fraction of the nk samples from class k = {0, 1} out of the total n 

samples at node τ. By splitting and sending the samples to two sub-nodes τl and τr (with 

respective samples fractions pl =
nl
n  and pr =

nr
n ) with a threshold tθ on variable θ, the Gini 

coefficient decreases ΔG(τ) is calculated as
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ΔG(τ) = G(τ) − plG(τl) − prG(τr) (10)

By searching over all variables θ and all possible thresholds tθ, the maximum ΔG(τ) is 

determined. Individually for all variables θ, the decrease in Gini impurity is recorded and 

accumulated for all nodes τ and all trees T in the forest:

IG(θ) = ∑
T

∑
τ

ΔGθ(τ, T) (11)

The Gini importance IG indicates the frequency a particular feature is selected for a split and 

the discriminative power of this feature for the classification problem. Based on this 

criterion, features ranked and selected prior to the training of a classifier. The Gini 

importance criterion has shown robustness against noise and effectiveness in selecting useful 

features [7].

Finally, a linear SVM was trained for MCI classification using the features selected based on 

the Gini importance. A nested leave-one-out cross-validation (LOOCV) scheme was adopted 

in this study to evaluate the classification performance.

3 Experiment Results

3.1 Classification Performance

We compared our proposed method with several other related methods for connectivity 

network based MCI classification in Table 1. Experiment results demonstrate that, by the use 

of ultra least criterion and the group Lasso, the proposed method models the relationship 

among brain regions more accurately and achieves much improved performance in 

identifying MCI subjects from NC. It indicates excellent diagnostic power of proposed 

classification framework and also validates the effectiveness of the modeling method.

By comparing results of methods with the ultra-least criterion and those without, we find 

that methods with ultra-least criterion obtained 3.28% accuracy increase. This implies that 

the ultra-least criterion efficiently increases the noise resistibility and robustness of the 

method by incorporating the weak derivatives into the least squares criterion and thus helps 

improve the classification performance afterwards. It should also be noted that the Group 

Lasso method achieves an accuracy of 77.05% which is 3.28% higher than ordinary Lasso. 

By grouping together the weights corresponding to certain features across different subjects, 

the group constraint reduces inter-subject variability and thus enables relatively easier 

differentiation between MCI subjects and healthy controls [3].

3.2 Brain Regions Involved in Classification

As a LOO strategy is employed to evaluate the proposed method, features selected at each 

loop might be quite different. To evaluate the importance of brain regions, the frequency that 

features being selected are counted and features with highest selected times are considered 
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to be significant in the classification of MCI. As each ROI corresponds to several features, 

the selected times of features corresponding to the same ROI is added up. The top ten ROIs 

and their locations are listed in Table 2.

It worth noticing that these top 10 regions locate in the frontal lobe (e.g. Superior frontal 

gyrus, orbital part) and the temporal lobe (e.g. Superior temporal gyrus). And regions such 

as hippocampus are also found to be associated with MCI/AD diagnosis. These results are 

exemplified in previous literatures [8–10].

As topological properties are extracted as features, brain regions are evaluated by selected 

frequency in classification at a nodal level. To further evaluate the significant differences of 

each connection, a standard two-sample t-test was employed on full dataset. Connections 

with a p-value smaller than 0.01 are listed in Table 3.

Figure 1 graphically shows the differences of these connections between MCI and NC (the 

thickness of edges indicates the strength of connections). It is interesting to note that the 

effective connectivity for most of the optimal connections are much smaller in MCI patients 

than that of NCs. Moreover, several ROIs (Hippocampus, Superior frontal gyrus, orbital 

part; Angular gyrus) selected in classification showed significant differences between two 

groups based on the two-sample t-test, further justify their contribution to MCI pathology.

4 Discussion and Conclusion

In summary, we have proposed a novel sparse effective connectivity network estimation 

method by imposing a group constraint and an ULS criterion into ordinary Lasso. We use an 

ultra-group Lasso to detect the network structure and re-estimate the connectivity strength 

via an UOFR algorithm. The network structure detection process prunes the ROI candidates, 

thus reducing the parameters of the model to prevent overfitting problems in effective 

network modelling. Promising experiment results demonstrated the efficacy of the proposed 

approach for MCI classification.

References

1. Sporns O. Towards network substrates of brain disorders. Brain. 2014; 137:2117–2118. DOI: 
10.1093/brain/awu148 [PubMed: 25057132] 

2. Lee HLD, Kang H, Kim BN, Chung MK. Sparse brain network recovery under compressed sensing. 
IEEE Trans Med Imaging. 2011; 30(5):1154–1165. [PubMed: 21478072] 

3. Wee CY, Yap PT, Zhang D, Wang L, Shen D. Group-constrained sparse fMRI connectivity modeling 
for mild cognitive impairment identification. Brain Struct Funct. 2014; 219(2):641–656. DOI: 
10.1007/s00429-013-0524-8 [PubMed: 23468090] 

4. Li Y, Cui WG, Guo YZ, Huang T, Yang XF, Wei HL. Time-varying system identification using an 
ultra-orthogonal forward regression and multiwavelet basis functions with applications to EEG. 
IEEE Trans Neural Netw Learn Syst. 2017; (99):1–13. DOI: 10.1109/TNNLS.2017.2709910

5. Li Y, Wee CY, Jie B, Peng ZW, Shen DG. Sparse multivariate autoregressive modeling for mild 
cognitive impairment classification. Neuroinformatics. 2014; 12(3):455–469. DOI: 10.1007/
s12021-014-9221-x [PubMed: 24595922] 

6. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. 
Neuroimage. 2010; 52(3):1059–1069. DOI: 10.1016/j.neuroimage.2009.10.003 [PubMed: 
19819337] 

Li et al. Page 7

Mach Learn Med Imaging. Author manuscript; available in PMC 2018 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, Hamprecht FA. A 
comparison of random forest and its Gini importance with standard chemometric methods for the 
feature selection and classification of spectral data. BMC Bioinformatics. 2009; 10

8. Nir TM, Jahanshad N, Villalon-Reina JE, Toga AW, Jack CR, Weiner MW, Thompson PM. 
Alzheimer’s Disease Neuroimaging Initiative (ADNI): Effectiveness of regional DTI measures in 
distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin. 2013; 3:180–195. 
DOI: 10.1016/j.nicl.2013.07.006 [PubMed: 24179862] 

9. Salvatore C, Cerasa A, Battista P, Gilardi MC, Quattrone A, Castiglioni I. Alzheimer’s Disease 
Neuroimaging Initiative: Magnetic resonance imaging biomarkers for the early diagnosis of 
Alzheimer’s disease: a machine learning approach. Front Neurosci. 2015; 9:307.doi: 10.3389/Fnins.
2015.00307 [PubMed: 26388719] 

10. Jie B, Zhang DQ, Gao W, Wang Q, Wee CY, Shen DG. Integration of network topological and 
connectivity properties for neuroimaging classification. IEEE Trans Bio Med Eng. 2014; 61(2):
576–589. DOI: 10.1109/Tbme.2013.2284195

Li et al. Page 8

Mach Learn Med Imaging. Author manuscript; available in PMC 2018 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Comparison of connectivity strengths based on the most discriminative connections
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Table 2

The most selected brain regions in classification

Index Full name Location

37 Hippocampus Limbic lobe

71 Caudate nucleus Subcortical gray nuclei

6 Superior frontal gyrus, orbital part Frontal lobe

28 Gyrus rectus Frontal lobe

31 Anterior cingulate and paracingulate gyri Limbic lobe

42 Amygdala Subcortical gray nuclei

52 Middle occipital gyrus Occipital lobe

54 Inferior occipital gyrus Occipital lobe

65 Angular gyrus Parietal lobe

81 Superior temporal gyrus Temporal lobe
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Table 3

The most discriminative connections. (STG = Superior temporal gyrus; PCG = Posterior cingulate gyrus; 

TPOmid = Temporal pole, middle temporal gyrus; CUN = Cuneus; HIP = Hippocampus; PHG = 

Parahippocampal gyrus; ORBsup = Superior frontal gyrus, orbital part; ANG = Angular gyrus; PCL = 

Paracentral lobule; ROL = Rolandic operculum; ORBmid = Middle frontal gyrus, orbital part; TPO-sup = 

Temporal pole, superior temporal gyrus; PUT = Lenticular nucleus, putamen; AMYG = Amygdala; ORBinf = 

Inferior frontal gyrus, orbital part; PreCG = Precentral gyrus; PCL = Paracentral lobule; MFG = Middle 

frontal gyrus; L = Left; R = Right)

Selected ROIs Direction of connectivity Neighbors of selected ROIs p-values

PHG.R STG.R 0.0054

CUN.R TPOmid.L 0.0061

ANG.R CUN.L 0.0063

PCL.R PUT.L 0.0064

ROL.L CUN.L 0.0068

ORBmid.R ORBinf.R 0.0070

TPOsup.R AMYG.L 0.0070

PCG.R HIP.L 0.0077

ORBsup.R PreCG.R 0.0080

PCL.L MFG.L 0.0094

IPL.R SMG.R 0.0089

AMYG.L Vermis9 0.0099
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