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Abstract

As very large studies of complex neuroimaging phenotypes become more common, human quality 

assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so 

far been made to address this issue with machine learning. In this work, we optimize predictive 

models of quality for meshes representing deep brain structure shapes. We use standard vertex-

wise and global shape features computed homologously across 19 cohorts and over 7500 human-

rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees 

classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, 

reducing human workload by 30–70%, or equivalently hundreds of human rater hours for datasets 

of comparable size, with recall rates approaching inter-rater reliability.
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1 Introduction

In recent years, large-scale neuroimaging studies numbering in the thousands and even 10’s 

of thousands of subjects have become a reality [1]. Though automated MRI processing tools 

[2] have become sufficiently mature to handle large datasets, visual quality control (QC) is 

still required. For simple summary measures of brain MRI, QC may be a relatively quick 

process. For more complex measures, as in large studies of voxel- and vertex-wise features 

[3], the QC process becomes more time-intensive for the human raters. Both training of 

raters and conducting QC ratings, once trained, can take hours even for modest datasets.

This issue is particularly relevant in the context of multi-site meta-analyses, exemplified by 

the ENIGMA consortium [1]. Such studies, involving dozens of institutions, require multiple 

researchers to perform quality control on their cohorts, as individual data cannot always be 

shared. In addition, for meta-analysis studies performed after data collection, the QC 

protocols must be reliable in spite of differences in scanning parameters, post-processing, 

and demographics. In effect, QC has become one of the main practical bottlenecks in big-

data neuroimaging. Reducing human rater time via predictive modeling and automated 

quality control is bound to play an increasingly important role in maintaining and hastening 

the pace of the scientific discovery cycle in this field.
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In this paper, we train several predictive models for deep brain structure shape model quality. 

Our data is comprised of the ENIGMA Schizophrenia and Major Depressive Disorder 

working groups participating in the ENIGMA-Shape project [3]. Using ENIGMA’s Shape 

protocol and rater-labeled shapes, we train a discriminative model to separate “FAIL”(F) and 

“PASS”(P) cases. For classification, we use a support vector classifier with a radial basis 

kernel (SVC) and Gradient Boosted Decision Trees (GBDT). Features are derived from the 

standard vertex-wise measures as well as global features. For six out of seven deep brain 

structures, we are able to reduce human rater time by 30 to 70 percent in out-of-sample 

validation, while maintaining FAIL recall rates similar to human inter-rater reliability. Our 

models generalize across datasets and disease samples.

2 Methods

Our goal in using machine learning for automated QC differs somewhat from most 

predictive modeling problems. Typical two-class discriminative solutions seek to balance 

misclassification rates of each class. In the case of QC, we focus primarily on correctly 

identifying FAIL cases, by far the smaller of the two classes (Table 1). In this first effort to 

automate shape QC, we do not attempt to eliminate human involvement, but simply to 

reduce it by focusing human rater time on a smaller subsample of the data containing nearly 

all failing cases. Our quality measures, described below, reflect this nuance.

2.1 MRI processing and shape features

Our deep brain structure shape measures are computed using a previously described pipeline 

[4,5], available via the ENIGMA Shape package. Briefly, structural MR images are 

parcellated into cortical and subcortical regions using FreeSurfer. Among the 19 cohorts 

participating in this study, FreeSurfer versions 5.1 and 5.3 were used, depending on the 

institution. The binary region of interest (ROI) images are then surfaced with triangle 

meshes and parametrically (spherically) registered to a common region-specific surface 

template [6]. This leads to a one-to-one surface correspondence across the dataset at roughly 

2,500 vertices per ROI. Our ROIs include the left and right thalamus, caudate, putamen, 

pallidum, hippocampus, amygdala, and nucleus accumbens. Each vertex p of mesh model M 
is endowed with two shape descriptors:

Medial Thickness, D(p) = ||cp − p||, where cp is the point on the medial curve c closest to p.

LogJac(p), Log of the Jacobian determinant J arising from the template mapping, J : Tϕ(p)Mt 

→ TpM.

Since the ENIGMA surface atlas is in symmetric correspondence, i.e. the left and right 

shapes are vertex-wise symmetrically registered, we can combine two hemispheres for each 

region for the purposes of predictive modeling. At the cost of assuming no hemispheric bias 

in QC failure, we effectively double our sample.

The vertex-wise features above are augmented with their volume-normalized counterparts: 

{D, J}normed(p) = {D, J}(p)

V
{1

3, 2
3}

. Given discrete area elements of the template at vertex p, At(p), 
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we estimate volume as V = ∑
p ∈ vrts(M)

3At(p)J(p)D(p). We also use two global features: the 

shape-wide feature median, and the shapewise 95th percentile feature threshold.

2.2 Human quality rating

Human-rated quality control of shape models is performed following the ENIGMA-Shape 

QC protocol44. Briefly, raters are provided with several snapshots of each region model as 

well as its placement in several anatomical MR slices (Fig. 1). A guide with examples of 

FAIL (QC=1) and PASS (QC=3) cases is provided to raters, with an additional category of 

MODERATE PASS (QC=2) suggested for inexperienced raters. Cases from the last category 

are usually referred to more experienced raters for second opinions. Once a rater becomes 

sufficiently experienced, he or she typically switches to the binary FAIL/PASS rating. In this 

work, all remaining QC=2 cases are treated as PASS cases, consistent with ENIGMA shape 

studies.

2.3 Predictive models

First, we used Gradient Boosted Decision Trees (GBDT). This is a powerful ensemble 

learning method introduced by Friedman [7] in which subsequent trees correct for the errors 

of the previous trees. In our experiments we used the Xgboost [8] implementation due to 

speed and regularization heuristics, with the logistic loss function. Second, we used Support 

Vector Classifier. Based on earlier experiments and the clustered nature of FAIL cases in our 

feature space, we used the radial basis function (RBF) kernel in our SVC models. Indeed, in 

preliminary experiments RBF outperformed linear and polynomial kernels. We used scikit-

learn’s [9] implementation of SVC.

2.4 Quality measures

In describing our quality measures below, we use the following definitions. TF stands for 

TRUE FAIL, FF stands for FALSE FAIL, TP stands for TRUE PASS, and FP stands for 

FALSE PASS. Our first measure, F−recall = TF
TF + FP , shows the proportion of FAILS that 

are correctly labeled by the predictive model. The second measure, 

F−share = TF + FF
Number of observations , shows the proportion of the test sample labeled as FAIL by 

the model. Finally, we used a modified F-score, which allows us to compare models based 

on the specific requirements of our task, i.e. a very high F-recall and F-share substantially 

below 1, we use a variation on the standard F-score.

F‐scoremod = 2 × F‐recall × (1 − F‐share)
F‐recall × (1 − F‐share) .

Note that the modified F-score cannot equal 1, as in the standard case. An ideal prediction 

leads to F-scoremod = 1 - F-share. The intuition behind our custom F-score is based on the 

highly imbalanced FAIL and PASS samples. A model that accurately labels all failed cases 

44enigma.usc.edu/ongoing/enigma-shape-analysis
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is only valuable if it substantially reduces the workload for human raters, a benefit reflected 

by F-share.

3 Experiments

For each of the seven ROIs, we performed eight experiments defined by two predictive 

models (SVC and GBDT), two types of features (original and normed) and two cross-

validation approaches. We tested ”Leave-One-Site-Out” and 5-fold stratified cross-

validation, as described below.

3.1 Datasets

In our experiments, we used deep brain structure shape data from the ENIGMA 

Schizophrenia and Major Depressive Disorder working groups.

Our predictive models were trained using 15 cohorts totaling 5718 subjects’ subcortical 

shape models from the ENIGMA-Schizophrenia working group. The ENIGMA-

Schizophrenia (ENIGMA-SCZ) working group is comprised of over two dozen cohorts from 

around the world. The goal of the working group is to identify subtle effects of 

Schizophrenia and related clinical factors on brain imaging features. For a complete 

overview of ENIGMA-SCZ projects and cohort details, see [10].

To test our final models, we used data from 4 cohorts in the Major Depressive disorder 

working group (ENIGMA-MDD), totaling 1509 subjects, for final out-of-fold testing. A 

detailed description of the ENIGMA-MDD sites and clinical questions can be found here 

[11].

3.2 Model validation

All experiments were performed separately for each ROI. The training dataset was split into 

two halves referred to as ’TRAIN GRID’ and ’TRAIN EVAL.’ The two halves contained 

data from each ENIGMA-SCZ cohort, stratified by the cohort-specific portion of FAIL 

cases. Model parameters were optimized using a grid search within ’TRAIN GRID’, with 

either stratified 5-fold or Leave-One-Site-Out cross-validation. Parameters yielding the 

highest Area Under the ROC-curve were selected from among all cross-validation and 

feature types.

Both SVC and GBDT produce probability estimates indicating the likelihood that the 

individual subject’s ROI mesh is a FAIL case, PFAIL. Exploiting this, we sought a 

probability threshold for each model selected during the grid search to optimize the modified 

F-score in the ’TRAIN EVAL’ sample. This amounts to a small secondary grid search. To 

simplify traversing this parameter space, we instead sample F-scoremod at regularly spaced 

values of PFAIL, from 0.1 to 0.9 in 0.1 increments. This is equivalent to F-share in 

the ’TRAIN EVAL’ sample (Eval F-share, Table 2).

Final thresholds (Thres in Table 2) were selected based on the highest F-scoremod, requiring 

that F-recall ≥ 0.8 - a minimal estimate of inter-rater reliability. It is important to stress that 
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while we used sample distribution information in selecting a threshold, the final out-of-

sample prediction is made on an individual basis for each mesh.

4 Results

Trained models were deliberately set to use a loose threshold for FAIL detection, predicting 

0.3–0.8 of observations as FAILs in the TRAIN GRID sample. These predicted FAIL 

observations contained 0.85–0.9 of all true FAILs, promising to reduce the human rater QC 

time by 20–70%. These results largely generalized to the ’TRAIN EVAL’ and test samples: 

Table 2 shows our final model and threshold performance for each ROI.

With the exception of the thalamus, our final models’ performance measures generalized to 

the test sample, in some cases having better sample F-recall and lower percentage of images 

still requiring human rating compared to the evaluation sample. A closer look suggests that 

variability in model predictions across sites generally follows human rater differences. Table 

3 breaks down performance by test cohort. It is noteworthy that the largest cohort, Münster 

(N = 1033 subjects, 2066 shape samples), has the best QC prediction performance.

At the same time, the ”cleanest” dataset, Houston, with no human-detected quality failures, 

has the lowest F-share. In other words, Houston would require the least human rater time 

relative to its size, as would be hoped.

Visualizing the test results in Figure 2, we see the trend for lower F-share with higher overall 

dataset quality maintained by the smaller cohorts, but reversed by Münster. This could be a 

reflection of our current models’ bias toward accuracy in lower-quality data due to greater 

numbers of FAIL examples (i.e., FAILs in high and low quality datasets may be qualitatively 

different). At the same time, F-recall appears to be independent of QC workload reduction 

due to ML, with most rates above the 0.8 mark.

5 Conclusion

We have presented a preliminary study of potential machine learning solutions for semi-

automated quality control of deep brain structure shape data. Though some work on 

automated MRI QC exists [12], we believe this is the first ML approach in detecting end-of-

the-pipeline feature failure in deep brain structure geometry. We showed that machine 

learning can robustly reduce human visual QC time for large-scale analyses for six out of the 

seven regions in question, across diverse MRI datasets and populations. Failure of the 

thalamus ML QC ratings to generalize out-of-sample may be explained by the region’s 

specific features. Though we have only used geometry information in model training, MRI 

intensity, available to human raters for all ROI’s, plays a particularly important role in 

thalamus ratings. The most common thalamus segmentation failure is the inclusion of lateral 

ventricle by FreeSurfer. Geometry is generally altered undetectably in such cases.

Beyond adding intensity-based features, possible areas of future improvement include 

combining ML algorithms, exploiting parametric mesh deep learning, employing geometric 

data augmentation, and refining the performance measures. Specifically, mesh-based 

convolutional neural nets can help visualize problem areas, which can be helpful for raters.
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Very large-scale studies, such as the UK Biobank, ENIGMA, and others, are becoming more 

common. To make full use of these datasets, it is imperative to maximally automate the 

quality control process that has so far been almost entirely manual in neuroimaging. Our 

work here is a step in this direction.
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Fig. 1. Example hippocampal shape snapshots used for human QC rating
Left: A mesh passing visual QC. Right: A mesh failing visual QC.
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Fig. 2. Scatter plots of F-recall and actual FAIL case percentage vs. proportion of predicted FAIL 
cases on test datasets
Left: F-share vs F-recall. Right: Fail F-share vs FAIL percentage. Mark size shows the 

dataset size. Mark shape represents dataset (site): ○ - CODE-Berlin (N=176); □ - 
Münster (N=1033); △ - Stanford (N=105); ▽ - Houston (N=195).
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