Skip to main content

Automatic Classification of Proximal Femur Fractures Based on Attention Models

  • Conference paper
  • First Online:
Book cover Machine Learning in Medical Imaging (MLMI 2017)

Abstract

We target the automatic classification of fractures from clinical X-Ray images following the Arbeitsgemeinschaft Osteosynthese (AO) classification standard. We decompose the problem into the localization of the region-of-interest (ROI) and the classification of the localized region. Our solution relies on current advances in multi-task end-to-end deep learning. More specifically, we adapt an attention model known as Spatial Transformer (ST) to learn an image-dependent localization of the ROI trained only from image classification labels. As a case study, we focus here on the classification of proximal femur fractures. We provide a detailed quantitative and qualitative validation on a dataset of 1000 images and report high accuracy with regard to inter-expert correlation values reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayram, F., Çakıroğlu, M.: Diffract: diaphyseal femur fracture classifier system. Biocybern. Biomed. Eng. 36(1), 157–171 (2016)

    Article  Google Scholar 

  2. Burns, J.E., Yao, J., Muñoz, H., Summers, R.M.: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 278(1), 64–73 (2016)

    Article  Google Scholar 

  3. Ebsim, R., Naqvi, J., Cootes, T.: Detection of wrist fractures in X-ray images. In: Shekhar, R., Wesarg, S., González Ballester, M.Á., Drechsler, K., Sato, Y., Erdt, M., Linguraru, M.G., Oyarzun Laura, C. (eds.) CLIP 2016. LNCS, vol. 9958, pp. 1–8. Springer, Cham (2016). doi:10.1007/978-3-319-46472-5_1

    Chapter  Google Scholar 

  4. van Embden, D., Rhemrev, S., Meylaerts, S., Roukema, G.: The comparison of two classifications for trochanteric femur fractures: the AO/ASIF classification and the jensen classification. Injury 41(4), 377–381 (2010)

    Article  Google Scholar 

  5. Grün, F., Christian Rupprecht, N.: A taxonomy and library for visualizing learned features in convolutional neural networks. In: ICML Visualization for Deep Learning Workshop (2016)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  7. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Neural Information Processig Systems (NIPS), pp. 2017–2025 (2015)

    Google Scholar 

  8. Jin, W.J., Dai, L.Y., Cui, Y.M., Zhou, Q., Jiang, L.S., Lu, H.: Reliability of classification systems for intertrochanteric fractures of the proximal femur in experienced orthopaedic surgeons. Injury 36(7), 858–861 (2017)

    Article  Google Scholar 

  9. Lindner, C., Thiagarajah, S., Wilkinson, J.M., arcOGEN Consortium, T., Wallis, G.A., Cootes, T.F.: Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE TMI 32(8), 1462–1472 (2013)

    Google Scholar 

  10. Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection. IEEE TMI 35(5), 1285–1298 (2016)

    Google Scholar 

  11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  12. Vedaldi, A., Lenc, K.: MatConvNet: Convolutional neural networks for matlab. In: Proceedings of the International Conference on Multimedia, pp. 689–692. ACM (2015)

    Google Scholar 

  13. Wu, J., Davuluri, P., Ward, K.R., Cockrell, C., Hobson, R., Najarian, K.: Fracture detection in traumatic pelvic CT images. J. Biomed. Imaging (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anees Kazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kazi, A. et al. (2017). Automatic Classification of Proximal Femur Fractures Based on Attention Models. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics