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Abstract

We present the first thorough practical study of the Lempel-Ziv-78 and the Lempel-Ziv-Welch com-
putation based on trie data structures. With a careful selection of trie representations we can beat
well-tuned popular trie data structures like Judy, m-Bonsai or Cedar.

1 Introduction

The LZ78-compression scheme [34] is an old compression scheme that is still in use today, e.g., in the Unix
compress utility, in the GIF-standard, in string dictionaries [2], or in text indexes [1]. Its biggest advantage
over LZ77 [33] is that LZ78 allows for an easy construction within compressed space and in near-linear time,
which is (to date) not possible for LZ77. Still, although LZ77 often achieves marginally better compression
rates, the output of LZ78 is usually small enough to be used in practice, e.g. in the scenarios mentioned
above [4, 1].

While the construction of LZ77 is well studied both in theory [4, 11, e.g.] and in practice [14, 13, e.g.],
only recent interest in LZ78 can be observed: just in 2015 Nakashima et al. [26] gave the first (theoretical)
linear time algorithm for LZ78. On the practical side, we are not aware of any systematic study.

We present the first thorough study of LZ78-construction algorithms. Although we do not present any
new theoretical results, this paper shows that if one is careful with the choices of tries, hash functions,
and the handling of dynamic arrays, one can beat well-tuned out-of-the-box trie data structures like Judy1,
m-Bonsai [27], or the Cedar-trie [32].
Related Work. An LZ78 factorization of size z can be stored in two arrays with z lg σ and z lg z bits to
represent the character and the referred index, respectively, of each factor. This space bound has not yet
been achieved by any efficient trie data structure. Closest to this bound is the approach of Arroyuelo and
Navarro [1, Lemma 8], taking 2z lg z+ z lg σ+O(z) bits and O(n(lg σ + lg lg n)) time for the LZ78 factoriza-

tion. Allowing O(z lg z) bits, O
(
n+ z lg2 lg σ

lg lg lg σ

)
time is possible [10]. Another option is the dynamic trie of

Jansson et al. [12] using O(n(lg σ + lg lgσ n)/ lgσ n) bits of working space and O
(
n lg2 lg n/ (lgσ n lg lg lg n)

)
time. All these tries are favorable for small alphabet sizes (achieving linear or sub-linear time when
lg σ = o

(
lg n lg lg lg n/lg2 lg n

)
). If the alphabet size σ becomes large, the upper bounds on the time get

unattractive. Up to lg σ = o(lg n), we can use a linear time solution taking O(n lg σ) bits of space [17, 25].
Finally, for large σ, there is a linear time approach taking (1 + ε)n lg n + O(n) bits of space [11]. Further
practical trie implementations are mentioned in Section 4.

2 Preliminaries

Let T be a text of length n over an alphabet Σ = {1, . . . . , σ} with |Σ| ≤ nO(1). Given X,Y, Z ∈ Σ∗

with T = XY Z, then X, Y and Z are called a prefix, substring and suffix of T , respectively. We call
T [i..] the i-th suffix of T , and denote a substring T [i] · · ·T [j] with T [i..j]. A factorization of T of size z

1http://judy.sourceforge.net
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Figure 3: LZ78 trie and LZW trie. Given
the text T = aaababaaaba, LZ78 fac-

torizes T into
1

a|
2

aa|
3

b|
4

ab|
5

aaa|
6

ba, where
the vertical bars separate the factors.
The LZ78 factorization is output as:
a|(1,a)|b|(1,b)|(2,a)|(3,a). This out-
put is represented by the left trie (a).
The LZW factorization of the same text
is

1

a|
2

aa|
3

b|
4

a|
5

ba|
6

aab|
7

a. We output it as
-1|1|-2|-1|3|2|-1. This output induces the
right trie (b).

partitions T into z substrings (factors) F1 · · ·Fz = T . In this article, we are interested in the LZ78 and
LZW factorization. If we stipulate that F0 and Fz+1[1] are the empty string, we get:

A factorization F1 · · ·Fz = T is called the LZ78 factorization [34] of T iff Fx = Fyc with Fy =
argmaxS∈{Fy′ :0≤y′<x} |S| and c ∈ Σ for all 1 ≤ x ≤ z; we say that y is the referred index of the factor Fx.

A factorization F1 · · ·Fz = T is called the LZW factorization [31] of T iff Fx = FyFy+1[1] with
Fy = argmaxS∈{Fy′ :1≤y′<x} |S|, or Fx = c ∈ Σ if no such Fy exists, for all 1 ≤ x < z. If Fx = FyFy+1[1] for

a y with 1 ≤ y < x, we call y the referred index of the factor Fx. Otherwise, Fx = c for a c ∈ Σ; we set
its referred index to −c < 0.

The factors can be represented in a trie, the so-called LZ trie. Each factor Fx (except the last factor in
LZW) is represented by a trie node v labeled with x (1 ≤ x ≤ z) such that the parent u of v is labeled with
y if y is the referred index of Fx. The edge (u, v) is then labeled with the last character of the factor Fx (or
the first character of Fx+1 for LZW).
Output. We transform the list of factors to a list of integer values as follows: We linearly process each
factor Fx for 1 ≤ x ≤ z. If Fx’s referred index is not positive, Fx is equal to a character c that is output (we
output −c in case of LZW). A factor Fx with a referred index y > 0 is processed as follows:

LZ78: If Fx = Fyc for a c ∈ σ, we output the tuple (y, c).

LZW: If Fx = FyFy+1[1] (or Fx = Fy for x = z), we output y + σ.

Algorithm. The folklore algorithm computing LZ78 and LZW uses a dynamic LZ trie that grows linearly
in the number of processed factors. The dynamic LZ trie supports the creation of a node, the navigation
from a node to one of its children, and the access to the labels.

Given that z is the number of LZ78 or LZW factors, the algorithm performs z searches of a prefix of a
given suffix of the text. It inserts z times a new leaf in the LZ trie. It takes n times an edge from a node to
one of its children.

3 LZ-Trie representations

In this section, we show five representations, each providing different trade-offs for computation speed and
memory consumption. All representations have in common that they work with dynamic arrays.
Resize Hints. The usual strategy for dynamic arrays is to double the size of an array when it gets full. To
reduce the memory consumption, a hint on how large the number of factors z might get is advantageous to
know for a dynamic LZ trie data structure. We provide such a hint based on the following lemma:

Lemma 3.1 ([3, 34]). The number of LZ78 factors z is in the range
√

2n+ 1/4− 1/2 ≤ z ≤ cn/ lgσ n, for
a fixed constant c > 0.

At the beginning of the factorization, we let a dynamic trie reserve so much space such that it can store
at least

√
2n elements without resizing. On enlarging a dynamic trie, we usually double its size. But if the
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number of remaining characters r to parse is below a certain threshold, we try to scale the data structure
up to a value for which we expect that all factors can be stored without resizing the data structure again.
Let z′ be the currently computed number of factors. If r < n/2 we use z′ + 3r/ lg r as an estimate (the
number 3 is chosen empirically), derived from z − z′ = O(r/ lgσ r) based on Lemma 3.1, otherwise we use
z′ + z′r/(n− r) derived from the expectation that the ratio between z′ and n− r will be roughly the same
as between z and n (interpolation).

3.1 Deterministic LZ Tries
index 1 2 3 4 5 6

first child 2 5 6
next sibling 3 4
character a a b b a a

Figure 4: Array data structures of binary built
on the example given in Figure 3

We first recall two trie implementations using arrays to store
the node labeled with x at position x, for each x with
1 ≤ x ≤ z.
Binary Search Trie. The first-child next-sibling represen-
tation binary maintains its nodes in three arrays. A node
stores a character, a pointer to one of its children, and a
pointer to one of its siblings. We do not sort the nodes in
the trie according to the character on their incoming edge,
but store them in the order in which they are inserted. (We found this faster in our experiments.) binary
takes 2z lg z + z lg σ bits when storing z nodes. See Figure 4 for an example.
Ternary Search Trie. A node of the Ternary Search Trie [5] ternary stores a character, a pointer to one of
its children, a pointer to one of its smaller siblings, and a pointer to one of its larger siblings. Similar to
binary, we do not rearrange the nodes. ternary takes 3z lg z + z lg σ bits when storing z nodes.

3.2 LZ Tries with Hashing

We use a hash table H[0..M − 1] for a natural number M , and a hash function h to store key-value pairs.
We determine the position of a pair (k, v) in H by the initial address h(k) mod M ; we handle collisions
with linear probing. We enlarge H when the maximum number of entries m := αM is reached, where α is
a real number with 0 < α < 1.

A hash table can simulate a trie as follows: Given a trie edge (u, v) with label c, we use the unique key
c+ σ` to store v, where ` is the label (factor index) of u (the root is assigned the label 0). This allows us to
find and create nodes in the trie by simulating top-down-traversals. This trie implementation is called hash
in the following.
Table Size. We choose the hash table size M to be a power of two. Having M = 2k for k ∈ N, we can
compute the remainder of the division of a hash value by the hash table size with a bitwise-AND operation,
i.e., h(x) mod 2k = h(x)&(2k − 1), which is practically faster2.

If the aforementioned resize hint suggests that the next power of two is sufficient for storing all factors,
we set α = 0.95 before enlarging the size (if necessary). We also implemented a hash table variant that
will change its size to fit the provided hint. This variant then cannot use the fast bit mask to simulate the
operation mod M . Instead, it uses a practical alternative that scales the hash value by M and divides this
value by the largest possible hash value3, i.e., Mh(k)/(maxk′ h(k′)). We mark those hash table variants with
a plus sign, e.g., hash+ is the respective variant of hash.

3.2.1 Compact Hashing

In terms of memory, hash is at a disadvantage compared to binary, because the key-value pairs consist of two
factor indices and a character; for an α < 1, hash will always take more space than binary. To reduce the
size of the stored keys, we introduce the representation cht using compact hashing.

The idea of compact hashing [16, 9] is to use a bijective hash function such that when storing a tuple
with key k in H, we only store the value and the quotient bh(k)/Mc in the hash table. The original key of an

2http://blog.teamleadnet.com/2012/07/faster-division-and-modulo-operation.html
3http://www.idryman.org/blog/2017/05/03/writing-a-damn-fast-hash-table-with-tiny-memory-footprints/
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entry of H can be restored by knowing the initial address h(k) mod M and the stored quotient bh(k)/Mc.
To address collisions and therefore the displacement of a stored entry due to linear probing, Cleary [7] adds
two bit vectors with which the initial address can be restored.

For the bijective hash function h, we consider two classes:
The class of linear congruential generators (LCGs). The class of LCGs [6] contains all functions lcga,b,p :
[0..p−1]→ [0..p−1], x 7→ (ax+b) mod p with p ∈ N, 0 < a < p, 0 ≤ b < p. If p and a are relative prime, then
there exists a unique inverse a−1 ∈ [1..p− 1] of a such that aa−1 mod p = 1. Then lcg−1a,b,p : y 7→ (y− b)a−1
mod p is the inverse of lcga,b,p. If p is prime, then a−1 = ap−2 mod p due to Fermat’s little theorem.
The class of xorshift functions. The xorshift hash function class [23] contains functions that use shift-
and exclusive or (xor) operations. Let ⊕ denote the binary xor-operator and w the number of bits of the
input integer. For an integer j < −bw/2c or j > bw/2c, the xorshift operation sxorw,j : [0..2w − 1] →
[0..2w − 1], x 7→

(
x⊕ (

⌊
2jx
⌋

mod 2w)
)

mod 2w is inverse to itself: sxorw,j ◦ sxorw,j = id.

It is possible to create a bijective function that is a concatenation of functions of both families4.
A compact hash table can use less space than a traditional hash table if the size of the keys is large: If

the largest integer key is u, then all keys can be stored in dlg ue bits, whereas all quotients can be stored in
dlg(maxu h(u)/M)e bits. By choosing the hash function carefully, it is possible to store the quotients in a
number of bits independent of the number of the keys.
Enlarging the hash table. On enlarging the hash table, we choose a new hash function, and rebuild the
entire table with the new size and a newly chosen hash function. We first choose a hash function h out of
the aforementioned bijective hash classes and adjust h’s parameters such that h maps from [0..mσ − 1] to
[0..2mσ − 1] (m has already its new size). This means that

• we select a function lcga,b,p with a prime mσ < p < 2mσ (such a prime exists [30] and can be

precomputed for all M = 2k, 1 ≤ k ≤ lg n) and 0 < a, b ≤ p randomly chosen, or that

• we select a function sxorw,j with lg(mσ) ≤ w ≤ lg(2mσ) and j arbitrary.

The hash table always stores trie nodes with labels that are at most m; this is an invariant due to the
following fact: before inserting a node with label m + 1 we enlarge the hash table and hence update m.
Therefore, the key of a node can be represented by a dlg(mσ)e-bit integer (we map the key to a single
integer with [0..m − 1] × [0..σ − 1] → [0..mσ − 1], (y, c) 7→ σy + c). Since h is a bijection, the function
[0..mσ − 1] → [0..M − 1] × [0.. b(2mσ − 1)/Mc], i 7→ (h1(i), h2(i)) := (h(i) mod M, bh(i)/Mc) is bijective,
too. We use h1 to find the locations of the entries in of our hash table H. When we want to store a node
with label x and key yσ+c in the hash table, we put x and h2(σy+c) in an entry of the hash table (the entry
is determined by h1, the linear probing strategy, and a re-arrangement with the bit vectors). In total, we
need M (lg(2ασ) + lgm) + 2M bits. Since m ≤ 2z − 1 there is a power of two such that M = 2blg(z/α)c+1 ≤
(2z−1)/α. On termination, the compact hash table takes at most M(2+lg(2ασm)) ≤ (2z−1)(3+lg(ασz))/α
bits. The memory peak is reached when we have to copy the data from the penultimate table to the final
hash table with the above size. The memory peak is at most M(3 + lg(mασ)) + M/2(2 + lg(mασ)) ≤
(2z − 1)(11 + 3 lg(zασ))/2α.

If we compare this peak with the approach using a classic hash table (where we need to store the full
key), we get a size of M(lgm+ lgm+ lg σ) +M/2(lg(m/2) + lg(m/2) + lg σ) ≤ 3(2z − 1)(4/3 + lg(σz2))/α
bits.

This gives the following theorem:

Theorem 3.2. We can compute the LZ78 and LZW factorization online using linear time with high proba-
bility and at most z(3 lg(zσα) + 11)/α bits of working space, for a fixed α with 0 < α < 1.

For the evaluation, we use a preliminary version of the implementation of Poyias et al. [28] that is based
on [7] with the difference that Cleary uses bidirectional probing ([28] uses linear probing).

4Popular hash functions like MurmurHash 3 (https://github.com/aappleby/smhasher) use a post-processing step that
applies multiple LCGs lcga,0,264 with a as a predefined odd constant, and some xorshift-operations.
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Trie Space Best Case (bits) Space Worst Case (bits)

binary 3z(lg(z2σ)− 2/3)/2 3z(lg(z2σ) + 4/3)
ternary 3z(lg(z3σ)− 1)/2 3z(lg(z3σ) + 2)
hash 3z(lg(z2σ)− 2/3)/2α 6z(lg(z2σ) + 4/3)/α
cht 3z(lg(αzσ) + 8/3)/2α 3z(lg(αzσ) + 11/3)/α
rolling 3z(w + lg(zσ)− 1/3)/2α 6z(w + lg(zσ) + 2/3)/α

Figure 5: Upper
and lower bound
of the maximum
memory used dur-
ing an LZ78/LZW
factorization with z
factors. The size of a
fingerprint is w bits.

3.2.2 Rolling Hashing

Here, we present an alternative trie representation with hashing, called rolling. The idea is to maintain the
Karp-Rabin fingerprints [15] of all computed factors in a hash table such that the navigation in the trie
is simulated by matching the fingerprint of a substring of the text with the fingerprints in the hash table.
Given that the fingerprint of the substring T [i..i+`−1] matches the fingerprint of a node u, we can compute
the fingerprint of T [i..i + `] to find the child of u that is connected to u by an edge with label T [i + `]. To
compute the fingerprints, we choose one of the two rolling hash function families:

• a function of the randomized Karp-Rabin ID37 family [19]5, and

• the function fermat(T ) =
∑|T |
i=1(T [i] − 1)(σ + 1)|T |−i mod 2w, where the modulo by the word size w

surrogates the integer overflow, and T [i]− 1 is in the range [0..σ − 1]. In the case of a byte alphabet,
σ + 1 = 28 + 1 = 257 is a Fermat prime. We compute fermat(T ) with Horner’s rule.

The LZ78/LZW computation using rolling is a Monte Carlo algorithm, since the computation can produce a
wrong factorization if the computed fingerprints of two different strings are the same (because the fingerprints
are the hash table keys).

3.2.3 Summary

We summarize the description of the trie data structures in this and the previous section by Figure 5 showing
the maximum space consumption of each described trie. The maximum memory consumption is due to the
peak at the last enlargement of the dynamic trie data structure, i.e., when the trie enlarges its space such
that z ≤ m ≤ 2z − 1 (where m is the number of elements it can maintain).

4 Experiments and Conclusion

We implemented the LZ tries in the tudocomp framework [8]6. The framework provides the implementation
of an LZ78 and an LZW compressor. Both compressors are parameterized by an LZ trie and a coder. The
coder is a function that takes the output of the factorization and generates the final binary output. We
selected the coder bit that stores the referred index y (with y > 0) of a factor Fx in dlg xe bits. That is
because the factor Fx can have a referred index y only with y < x. We can restore the coded referred index
on decompression since we know the index of the factor that we currently process and hence the number
of bits used to store its referred index (if we coded it)7. This yields

∑z
i dlg ie = z dlg ze − (lg e)z + O(lg z)

bits for storing the (positive) referred indices. The additional characters in LZ78 and the negative referred
indices in LZW are output naively as 8-bit integers.

The LZ78 and LZW compressor are independent of the LZ trie implementation, i.e., all trie data structures
described in the previous sections can be plugged into the LZW or LZ78 compressor easily. We additionally
incorporated the following trie data structures into tudocomp:

5https://github.com/lemire/rollinghashcpp
6The source code of our implementations is freely available at https://github.com/tudocomp, except for cht and bonsai due

to copyright restrictions.
7this approach is similar to http://www.cplusplus.com/articles/iL18T05o
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cedar: the Cedar trie [32], representing a trie using two arrays.

judy: the Judy array, advertised to be optimized for avoiding CPU cache misses (cf. [21] for an evaluation).

bonsai: the m-Bonsai (γ) trie [27] representing a trie whose nodes are not labeled. It uses a compact hash
table, but unlike our approach, the key consists of the position of the parent in the hash table (instead
of the label of the parent) and the character. Due to this fact, we need to traverse the complete trie
for enlarging the trie. We store the labels of the trie nodes in an extra array.

The data structures are realized as C++ classes. We added a lightweight wrapper around each class providing
the same interface for all tries.
Online Feature. Given an input stream with known length, we evaluate the online computation of the
LZ78 and LZW compression for different LZ trie representations. We assume that Σ is a byte alphabet, i.e.,
σ = 28. On computing a factor, we encode it and output it instantaneously. This makes our compression
program a filter [24], i.e., it processes the input stream and generates an output stream, buffering neither
the input nor the output.
Implementation Details. The keys stored by hash are stored in integers with a width of 40 bit. The values
stored by hash, rolling and bonsai are 32-bit integers. For all variants working with hash tables, we initially
set α to 0.3.

According to the birthday paradox, the likelihood that the fingerprints of two different substrings match
is anti-correlated to the number of bits used for storing the fingerprint if we assume that the used rolling
hash function distributes uniformly. We used 64-bit fingerprints because, unlike 32-bit fingerprints, the
factorization produced by rolling are correct for all test instances and all tested rolling hash functions.
Hash Function. We use cht with a hash function of the LCG family. Our hash table for hash uses a xorshift
hash function8 derived from [29]. It is slower than simple multiplicative functions, but more resilient against
clustering. Alternatives are sophisticated hash functions like CLHash [20] or Zobrist hashing [35, 18]. These
are even more resilient against clustering, but have practical higher computation times in our experiments.
Setup. The experiments were conducted on a machine with 32 GB of RAM, an Intel Xeon CPU E3-1271 v3

and a Samsung SSD 850 EVO 250GB. The operating system was a 64-bit version of Ubuntu Linux 14.04 with
the kernel version 3.13. We used a single execution thread for the experiments. The source code was compiled
using the GNU compiler g++ 6.2.0 with the compile flags -O3 -march=native -DNDEBUG.
Datasets. We evaluated the combinations of the aforementioned tries with the LZW and LZ78 algorithms
on the 200MiB text collections provided by tudocomp. We assume that the input alphabet is the byte
alphabet (σ = 28). The indices of the factors are represented with 32-bit integers. Due to space restrictions,
we choose pc-english as a representative for a standard English text and pcr-cere as a representative for
a highly-repetitive text with small alphabet size (the evaluation on the other datasets were quite similar).
We plotted the memory consumption against the time (in logarithmic scale) for both datasets in Figure 6
and Figure 7. To avoid clutter, we selected one hash function per rolling hash table: We chose fermat with
rolling and ID37 with rolling+ for the plots. We additionally added the number of LZ77 factors [33] as a
reference.
Overall Evaluation. The evaluation shows that the fastest option is rolling. The size of its fingerprints is a
trade-off between space and the probability of a correct output. When space is an issue, rolling with 64-bit
fingerprints is no match for more space saving trie data structures. hash is the second fastest LZ trie in
the experiments. With 40-bit keys it uses less memory than rolling, but is slightly slower. Depending on
the quality of the resize hint, the variants hash+ and rolling+ take 50% up to 100% of the size of hash and
rolling, respectively. hash+ and rolling+ are always slower than their respective standard variants, sometimes
slower than the deterministic data structures ternary and binary. binary’s speed excels at texts with very
small alphabets, while ternary usually outperforms binary. Only cht can compete with binary in terms of
space, but is magnitudes slower than most alternatives. The third party data structures cedar, bonsai and
judy could not make it to the Pareto front.

8http://xorshift.di.unimi.it/splitmix64.c
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Figure 6: Evaluation of LZ78/LZW on the English text pc-english with σ = 226. Left: LZ78 factorization
with z = 21.4M, dlg ze = 25 and z lg z + z lg σ = 83.8MiB. The compressed file size is 80.2MiB. Right: LZW
factorization with z = 23.5M, dlg(255 + z)e = 25 and z lg(255 + z) = 70.13MiB. The compressed file size is
66.1MiB. The LZ77 factorization consists of z = 14M factors, and can be stored in 2z lg n = 93.3MiB.

Evaluation of rolling. The hash table with the rolling hash function fermat is slightly faster than with a
function of the ID37 family, but the hash table with fermat tends to have more collisions (cf. Table 1). It
is magnitudes slower at less compressible texts like pc-proteins due to the high occurrence of collisions.
The number of collisions can drop if we post-process the output of fermat with a hash function that is more
collision resistant (like the hash function used for hash). Applying the hash function on fermat speeds up
the computation only if the number of collisions is sufficiently high (e.g., rolling+ with fermat in Table 1).

The domain of the Karp-Rabin fingerprints can be made large enough to be robust against collisions when
hashing large texts. In our case, 64-bit fingerprints fitting in one computer word were sufficient. Checking
whether the factorization is correct can be done by reconstructing the text with the output and the built LZ
trie. However, a compression with rolling combined with a decompression step takes more time than other
approaches like hash or binary. Hence, a Las Vegas algorithm based on rolling is practically not interesting.
Outlook. An interesting option is to switch from the linear probing scheme to a more sophisticated scheme
whose running time is stable for high loads, too [22]. This could be especially beneficent if the resize hint
provides a more accurate lower bound on the number of factors.

Speaking of novel hash tables, we could combine the compact hash table [7] with the memory management
of Google’s sparse hash table9 leading to an even more memory friendly trie representation.
Acknowledgements. We are grateful to Patrick Dinklage for spell-checking the paper, and to Marvin Löbel
for providing the basement of the LZ78/LZW framework in tudocomp. Further, we thank Andreas Poyias
for sharing the source code of the m-Bonsai trie [27] and the compact hash table [28].
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pc-english pcr-cere

LZ78 LZW LZ78 LZW

Trie Time Space Time Space Time Space Time Space

hash with hash table
std::unordered map 51.0s 856.6MiB 54.0s 937.9MiB 42.3s 703.2MiB 44.1s 760.8MiB
std::map 161.2s 980.2MiB 167.2s 1.1GiB 98.8s 722.5MiB 104.6s 781.6MiB
rigtorpa 14.9s 960.0MiB 15.2s 960.0MiB 12.0s 960.0MiB 12.3s 960.0MiB
flathashb 33.5s 24GiB 24.5s 24GiB 18.5s 6GiB 19.2s 6GiB
flathashc 15.1s 1.3GiB 15.7s 1.3GiB 12.4s 1.3GiB 13.0s 1.3GiB
densehashd 23.0s 576.0MiB 24.4s 576.0MiB 29.4s 576.0MiB 30.8s 576.0MiB
sparsehashd 49.1s 255.7MiB 52.2s 280.0MiB 68.6s 191.3MiB 72.4s 206.1MiB

LZ-index [7] 24.6s 1047MiB 14.5s 817.3MiB

Table 2: hash with different hash tables, and the LZ-index.

ahttps://github.com/rigtorp/HashMap, α = 0.5 hard coded
bhttps://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/, it uses the identity as a hash function and

doubles its size when experiencing too much collisions
cSee Footnote b, but with our default hash function
dhttps://github.com/sparsehash/sparsehash

A Variations of Hash Tables

The trie representation hash can be generalized to be used with any associative container. The easiest
implementation is to use the balanced binary tree std::map or the hash table std::unordered map provided
by the standard library of C++11. std::unordered map is conform to the interface of the C++ standard
library, but therefore sacrifices performance. It uses separate chaining that tends to use a lot of small
memory allocations affecting the overall running time (see Table 2). Another pitfall is to use the standard
C++11 hash function for integers that is just the identity function. Although this is the fastest available hash
function, it performs poorly in the experiments. There are two reasons. The first is that k 7→ k mod M
badly distributes the tuples if M is not a prime. The second is that the input data is not independent: In
the case of LZ78 and LZW, the composed key c+ `σ of a node v connected to its parent with label ` by an
edge with label c holds information about the trie topology: all nodes whose keys are `σ+ d for a d ∈ Σ are
the siblings of v. Since ` is smaller than the label of v (` is the referred index of the factor corresponding
to v), larger keys depend on the existence of some keys with smaller values. Both problems can be tackled
by using a hash function with an avalanche effect property, i.e., flipping a single bit of the input changes
roughly half of the bits of the output. In Table 2 we evaluated the identity and our standard hash function
(see Footnote 8) as hash functions for the hash table flathash, which seems to be very sensitive for hash
collisions.

We selected the LZ trie of the LZ-index [7] as an external competitor in Table 2. We terminated the
execution after producing the LZ trie of the LZ78 factorization. We did not integrate this data structure
into tudocomp.

The only interesting configuration is hash with the hash table sparsehash, since it takes 4.1MB less
space than binary while still being faster than cht, at the LZ78-factorization of pcr-cere.

B Reasons for Linear Probing

Collisions in our hash table are resolved by linear probing. Linear probing inserts a tuple with key k at
the first free entry, starting with the entry at index h(k) mod M . Linear probing is cache-efficient if the
keys have a small bit width (like fitting in a computer word). Using large hash tables and small keys, the
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Figure 8: Evaluation of LZ78/LZW on the tab-spaced-version file hashtag with σ = 179. Left: LZ78
factorization with z = 18.9M, dlg ze = 25 and z lg z + z lg σ = 73.4MiB. The compressed file size is 70.6MiB.
Right: LZW factorization with z = 21.1M, dlg(255 + z)e = 25 and z lg(255 + z) = 62.9MiB. The compressed
file size is 58.9MiB. The LZ77 factorization consists of z = 13.7M factors, and can be stored in 2z lg n =
90.4MiB.

cache-efficiency can compensate the chance of higher collisions [1, 4]. Linear probing excels if the load ratio
is below 50%, and it is still competitive up to a load ratio of 80% [6, 2]. Nevertheless, its main drawback
is clustering : Linear probing creates runs, i.e., entries whose hash values are equal. With a sufficient high
load, it is likely that runs can merge such that long sequence of entries with different hash values emerge.
When trying to look up a key k, we have to search the sequence of succeeding elements starting at the initial
address until finding a tuple whose key is k, or ending at an empty entry. Fortunately, the expected time of
a search is rather promising for an α not too close to one: Given that the used hash function h distributes
the keys independently and uniformly, we get O

(
1/(1− α)2

)
expected time for a search [5]. In practice,

even weak hash functions (like we use in this article) tend to behave as truly independent hash functions [3].
These properties convinced us that linear probing is a good candidate for our representations of the LZ trie
using a hash table.

C More Evaluation

We additionally evaluated the presented trie data structures on two other datasets in Figures 8 and 9,
showing similar characteristics as the plots in Figures 6 and 7.

References

[1] N. Askitis. Fast and compact hash tables for integer keys. In Proc. ACSC, volume 91 of CRPIT, pages
101–110. Australian Computer Society, 2009.

[2] J. R. Black, C. U. Martel, and H. Qi. Graph and hashing algorithms for modern architectures: Design
and performance. In Proc. WAE, pages 37–48. Max-Planck-Institut für Informatik, 1998.

[3] K. Chung, M. Mitzenmacher, and S. P. Vadhan. Why simple hash functions work: Exploiting the entropy
in a data stream. Theory of Computing, 9:897–945, 2013.

12



101 102

200

300

400

500

600

binary

rolling+

ternary

cht
bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZ78 pc-dna

101 102

200

300

400

500

600

binary

rolling+

ternary

cht

bonsai

hash+

cedar

judy

rolling

hash

time (s)

m
em

or
y
(M

iB
)

LZW pc-dna

Figure 9: Evaluation of LZ78/LZW on the DNA sequence pc-dna with σ = 17. Left: LZ78 factorization
with z = 16.4M, dlg ze = 24 and z lg z + z lg σ = 54.8MiB. The compressed file size is 60.5MiB. Right: LZW
factorization with z = 17.8M, dlg(255 + z)e = 25 and z lg(255 + z) = 52.9MiB. The compressed file size is
48.9MiB. The LZ77 factorization consists of z = 13.9M factors, and can be stored in 2z lg n = 92.1MiB.

[4] G. L. Heileman and W. Luo. How caching affects hashing. In Proc. ALENEX, pages 141–154. SIAM,
2005.

[5] D. Knuth. Sorting and Searching, volume III of The Art of Computer Programming. Addison-Wesley,
1973.

[6] T. Maier and P. Sanders. Dynamic Space Efficient Hashing. ArXiv CoRR, 1705.00997.

[7] G. Navarro. Implementing the LZ-index: Theory versus practice. ACM Journal of Experimental Algo-
rithmics, 13(2):2:1.1–2:1.49, 2008.

13


	1 Introduction
	2 Preliminaries
	3 LZ-Trie representations
	3.1 Deterministic LZ Tries
	3.2 LZ Tries with Hashing
	3.2.1 Compact Hashing
	3.2.2 Rolling Hashing
	3.2.3 Summary


	4 Experiments and Conclusion
	A Variations of Hash Tables
	B Reasons for Linear Probing
	C More Evaluation

