This is the accepted manuscript of the article, which has been published in String Processing and Information Retrieval: 24th
International Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings: International Symposium on String
Processing and Information Retrieval. Lecture Notes in Computer Science, 10508, 2017, 214-220. ISBN 978-3-319-67427-8.
https://doi.org/10.1007/978-3-319-67428-5_18

Mining Bit-Parallel LCS-length Algorithms

Heikki Hyyro

Faculty of Natural Sciences, University of Tampere, Finland
heikki.hyyro@uta.fi

Abstract. Some of the most efficient algorithms for computing the
length of a longest common subsequence (LLCS) between two strings
are based on so-called “bit-parallelism”. They achieve O([m/w]n) time,
where m and n are the string lengths and w is the computer word size.
The first such algorithm was presented by Allison and Dix [3] and per-
forms 6 bit-vector operations per step. The number of operations per
step has later been improved to 5 by Crochemore at al. [5] and to 4 by
Hyyro [6]. In this short paper we explore whether further improvement
is possible. We find that under fairly reasonable assumptions, the LLCS
problem requires at least 4 bit-vector operations per step. As a byproduct
we also present five new 4-operation bit-parallel LLCS algorithms.

1 Introduction

Let A and B be input strings of lengths m and n. Finding LLCS(A, B), the
length of a longest common subsequence (LCS) between the strings A and B, is
a classic and much studied problem in computer science. A fundamental O(mn)
dynamic programming solution was given by Wagner and Fischer [9], and this
quadratic worst-case complexity cannot be improved by any algorithm that uses
individual equal/nonequal comparisons between characters [2]. Furthermore a
recent conjecture [1] claims that the LLCS problem requires at least O(n?~*)
time for two strings of equal length m = n, for any choice of a constant A > 0.
Numerous further LLCS algorithms have been proposed over the last few
decades. Breaking the quadratic complexity bound has proven elusive, but sig-
nificant practical improvements have been achieved. A comprehensive survey of
LLCS algorithms by Bergroth et al. [4] found the algorithms of Kuo and Cross
(KC) [7], Rick [8] and Wu et al. (WMMM) [10] to be the fastest in practice. This
survey, however, did not include the already existing so-called “bit-parallel” al-
gorithm of Allison and Dix [3]. The bit-parallel approach has been later found to
be very practical. For example Hyyro [6] reported that his improved bit-parallel
algorithm (Hyy) dominates over KC. In order to explore this further, we per-
formed a comparison between Hyy, KC, WMMM and basic dynamic programming
(DP)!. We tested first with random strings of lengths m = n = 50 and then with
random strings of lengths m = n = 2000. The alphabet size varied from 2 to

! The algorithm of Rick, as recommended in [4], was omitted as it was not competitive
in our experiments. This was probably due to its high O(om) preprocessing cost.

2 H. Hyyro

145 m=n=50 124 m =n=2000

038 - 1

0.8

0.6 4% L.

Dynamic programming 4t #

Kuo-Cross - 06 B
+ I Dynamic programming
- 0.4 1% Kuo-Cross -

-

WMMM
Bit-parallel (w = 64) -—-*--

tume
time

0.4 4 ¥

WMMM
Bit-parallel (w = 64)

0.2

024

0 0

— T T A B e e e A E e
2 20 38 56 74 92 110 128 146 164 182 200 218 236 254 2 20 38 56 74 92 110 128 146 164 182 200 218 236 254
alphabet size alphabet size

Fig. 1: LLCS algorithm tests with m = n = 50 (left) and m = n = 2000 (right).

256. The methods were implemented in C and compiled with GNU gcc using
the -O3 switch. The test computer had 64-bit Ubuntu Linux 16.04, 16 GB RAM
and a 2.3 GHz Intel i7-3651QM CPU. The results are shown in Fig. 1 and seem
to confirm the very good performance of the bit-parallel approach.

The first bit-parallel LLCS algorithm by Allison and Dix performs 6 bit-
vector operations per each character of B. Later Crochemore et al. [5] improved
this to 5 and finally Hyyro [6] to 4 operations per character, the latter being
the most efficient currently known bit-parallel LLCS algorithm. In this paper we
explore whether a bit-parallel algorithm that requires only 3 operations exists.

2 Preliminaries

We assume that strings consist of characters from an alphabet X with alphabet
size 0. S; denotes the ith character of S and S; ; denotes the substring of S
that starts at the ith character and ends at the jth character. A string C is a
subsequence of a string A if and only if A can be transformed into C' by removing
zero or more characters from A. C is a longest common subsequence (LCS) of
strings A and B if it is both a subsequence of A and a subsequence of B, and no
longer string with this property exists. We denote the unique length of an LCS
between A and B by LLCS(A,B). For example LLCS("chart", "chatter") =
4, and both "chat" and "char" are corresponding LCSs of length 4.

The fundamental dynamic programming solution for LL.CS computation uses
Recurrence 1 to fill an (m + 1) x (n + 1) dynamic programming matrix L with
values L[i, j] = LLCS(A;. i, Bi. ;). The following Observations 1 and 2 are well-
known and easy to derive from Recurrence 1.

Recurrence 1. When 0 <i<mand 0 <j <n:

Lli—1,j—1]+1, if A, = B;.

L[i,0] =0, L[0,5] =0, and i, j] = {max(L[i —1,4], L[i,j — 1]), otherwise.

Observation 1. L[i,j] € {L[i — 1,j],L[i — 1,j] + 1}.
Observation 2. The values in a column j of L may be described by recording
all rows i € 1,...,m where L[i,j] = L[i — 1,j] + 1.

L clhjal|t|t|e|rT
olololololololo Vo Vi Vo V3 Vy V5 Vs V7
clO|1|1f1]|1|1]1]1 OjLjtjijijrjijl
O(0j1|1|1f1]1]1
hiO0|1]2]|2]2(2(2]2
0/(0ojOf1j1]1(f1]1
al0|112(3|3[3[|3]3 oToTololoTolol1
ri0(1(2|13|3|3|3]|4 oTolololirir1l0
t|0])1](2|3(4(4|4|4

Fig.2: The dynamic programming table L and corresponding column vectors V.

We use the following notation with bit-vectors: '&’ denotes bitwise “and”, ’|’
denotes bitwise “or”, ’\’ denotes bitwise “xor”, ’~’ denotes bit complementation,
and <<’ and ">>’ denote shifting the bit-vector left and right, respectively,
using zero padding at both ends. The ith bit of the bit vector V is V[i] and
bit positions grow from right to left. For example the bits values of a bit-vector
V' =1011001 are V[1] = V[4] = VI[5] = V[7] =1 and V[2] = V[3] = V6] = 0.

Bit-parallel algorithms take advantage of the fact that digital computers
perform operations on chunks of w bits, where w is the computer word size (in
most recent computers w = 64). In case of LLCS computation, Observations 1
and 2 permit us to represent the m row values of column j of L by a length-m
bit-vector V; whose ith bit is 1 if and only if L[i, j] = L[i — 1, 4] + 1. Now the
actual value L[m,j] is given by the sum > -, V;[k], and V; fits into [m/w]
computer words. Fig. 2 shows an example of a dynamic programming table L
and its representation by Vj vectors. Clearly also other bit encodings are possible:
we may e.g. define a complemented variant Vj’ = ~V}, where the ith bit of Vj' is
0 if and only if L[i, j] = L[i — 1, j] + 1. Note that the overall value LLCS(A, B)
= L[m,n] is given by the number of 1-bits in V,, (or the number of 0-bits in V}).
The column vector V; (or V}) can be computed from the previous column vector
Vi—1 (or V}’_l) by a constant number of bit-vector operations. The computation
requires knowledge of all rows 7 that have a match between the current column
character B[j] and the row character A[i]. This is facilitated by precomputing
for each different character ¢ a length-m match bit-vector M|[c] whose ith bit is
1 if and only if A[i] = c.

The 6-operation bit-parallel LLCS algorithm of Allison and Dix encodes the
columns of L by V;, and the 5-operation algorithm of Crochemore at al. and
the 4-operation algorithm of Hyyro use the complemented vectors Vj’ . These
three algorithms, together with the preprocessing of the match vectors M|c], are
described in Fig. 3. See the original articles [3,5, 6] for details about the algo-
rithms’ logic. The algorithms run in O([m/w]n) time, as a bit-vector operation
on length-m bit-vectors can be done in O([m/w]) time.

3 A Lower Bound for the Bit-Vector Operations

Given the progress from 6 to 4 bit-vector operations, a natural question is
whether further improvement to 3 operations is possible. In order to make this
problem approachable, we make the following four fairly reasonable assumptions:

4 H. Hyyro

PreprocessM (A1) CIPR(A1..m,Bi..n)

1. For c € ¥ Do 1. Vg < ~0

2. M[CM_O 2. For j€1...n Do

3.Forie1l...m Do ' 3. V)« (V/_, +(V]_y & M[By]))

4. M[A] < M[A] | (1 << (i—1)) | (V/_y & (~M][By)))

AD(A;..m, Bi..n) 4. Return countZerobits(V};)

1. Vo <0 Hyy(Ai...m,B1i..n)

2. For jel1...n Do 1.V0'<—~O

3. P+ M[B;] | Vi N 2.Forjel...nDo

4 Vi P&((P=((Via << [1) " P)ll3. P MBj] & V],

5. Return countOnebits(V},) 4. V] (V] —P)| (V. +P)
5. Return countZerobits(V;,)

Fig. 3: The bit-parallel LLCS algorithms of Allison and Dix (AD), Crochemore et

al.

1.
2.

3.

4.

(CIPR) and Hyyr6 (Hyy). Also preprocessing of the M-vectors is shown.

Generality: the algorithm must work with all bit-vector lengths w.

Input: a length-m bit-vector representing the increment positions in column
Jj — 1 and a length-m bit vector representing the matching rows for B;.
One-to-one correspondence between rows and bit-positions: each bit position
in the bit-vectors corresponds to a certain row 1.

Universality: the algorithm uses only commonly available operations.

These assumptions seem fairly reasonable as we in practice can afford to use
only 1 bit per row: a scheme that uses k bits per row needs km/w computer
words per column, and hence the number of operations should be less than 4/k
in order to improve on the best current bit-parallel algorithm.

We tackled the problem by enumerating and testing all possible 3-operation

bit-parallel algorithms that fulfill the preceding assumptions. This was feasible
as the number of operations is so small. The enumeration proceeded roughly as
follows and more or less corresponds to a 10-level deep nested for /while-loop:

1.

Enumerate over all ways to select operands for 3 operations. Below the values
C1 and Cy are constants (more than two would be redundant) and R; refers
to the result of the ith operation. Each operation selects operands as follows:

— The 1st operation selects 2 operands from {V;_1,C1, Cs, M|c]}.

— The 2nd operation selects 2 operands from {V;_1,C4,Cs, M|c], R1}.

— The 3rd operation selects 2 operands from {V;_1,C1,C2, M[c], R1, R}
Under step 1, iterate over all permutations of 1,...,w, where each defines
one possible mapping from bits to rows in the column and match vectors:
which bit position corresponds to which row.

Under step 2, iterate over all 2 length-w bit vectors, where each defines one
possible set of bit roles for the column vectors: the ith bit defines whether
an increment L[i, j] = L[i — 1,j] + 1 is recorded as a 1 or 0 bit.

Under step 3, iterate over all 2% length-w bit vectors, where each defines one
possible set of bit roles for the match vectors: the ith bit defines whether a
match A[i] = ¢ is recorded into M|[c] as a 1 or 0 bit.

5. Under step 4, iterate over all possible constant values (ie. all 2% possible
values for C and Cs, independent of each other).

6. Under step 5, iterate over all possible ways to select 3 operations out of the
set of permitted operations.

(a) For each selection of 3 operations, check whether the formula is correct by
checking if the formula produces correct result (into Rs3) with all inputs
(combinations of previous column vector and current match vector).

i. The result is verified by comparing R3 with the result of basic dy-
namic programming (permuting the row positions and inverting bit
values where necessary).

Although this exceeds the typical assumptions of bit-parallel algorithms, the
search allowed each operation to be (1) any of the 16 possible binary logical
operations, (2) an arithmetic operator +, -, * or /, or (3) a left or right shift
that uses either 1-bits or the left /rightmost bit for padding (allowed shift lengths
are 1,...,w—1). Note that 0-padding shifts are expressed by multiplication and
division (with one of the constants, such as Cy, specifying the multiplier).

We ran the exhaustive search using a fixed small length w = 4. The compu-
tation took roughly 50 minutes and was unable to find a working 3-operation
formula. This provides support for a claim that the existing 4-operation bit-
parallel LLCS algorithm is optimal within the constraints described before. In
order to gain confidence in the correctness of the procedure, we modified the
implementation to do an exhaustive search over all 4-operation combinations.
As this would have otherwise taken too much time, the 4-operation test was re-
stricted to consider only two linear mappings from bits to rows: the basic order,
where the ith bit corresponds to row i, and a reverse order, where the ith bit
corresponds to the row m — ¢ + 1. The other parts of the implementations were
left intact. The 4-operation run took roughly 1 hour and found dozens of cor-
rect 4-operation algorithms. Many of these used non-standard logical bit-vector
operations, but a total of 6 essentially different algorithms used only the univer-
sally supported C-style arithmetic and logical operations. One of these was the
algorithm Hyy of Hyyr6 [6] and the rest were new. We note that the search also
found the CIPR algorithm of Crochemore et al. [5], as that algorithm makes only
4 operations when the non-standard logical “X and not Y”-operation counts as
one operation. Finding these formulas provides some further confidence that the
search procedure works correctly.

Fig. 4 shows the five new 4-operation bit-parallel LLCS algorithms. All use
the natural top-down mapping between bits and rows, where the ith bit cor-
responds to row ¢, and uniform bit roles (the meaning of 0 and 1 bits is the
same in all rows of the same vector). Some use complemented match vectors:
we define M’[c] as a match vector whose ith bit is 0 if and only if A[i] = c.
The names 11a, 11b, 10, 00a and 00b reflect the bit roles. The first letter is 1
if the algorithm uses M and 0 if it uses the complemented M’ match vectors,
respectively. The second letter is 1 if the algorithm uses the Vj; and 0 if it uses the
complemented Vj’ column vectors. According to our preliminary experiments, all
these 4-operation variants have virtually identical practical performance.

6

H. Hyyro

1
1
2

3.
4.

5

1
1

CUR W= OUA W

1a(A1..Am7Bl..An)

Vo0

.Forjel...nDo

P« M[B;] | Vj

Vi P& (Vi + Vi1 —P)
. Return countOnebits(V;,)

].b(Alma Bl-»-n)

PreprocessM’(A1...m)

1. For c € Y Do

2. M'[d+~0

3.Foric1l...m Do

4. M'[A]+ M'[A] & ~(1<< (i—1))

Ooa(Al.“m, Bln)

!
For i ¢ 1 D 2.For jel...n Do
. For j ...n Do 5 P MBI &V,
P+ M[B;] | Vj1 L VieP| (v e _p)
Vi P& (Vi = (Vi P)) 5‘ Ret] m counté;i'obigg(lv/)
. Return countOnebits(V;,) : u n
O(Al'myBln) OOb(/Alm’Bln)
!/ 1. VO < NO
. Vg <~ ~0 .
Forjc1...n Do 2.For jel...n Do
' / 3. P+ M[Bj]&V],
P+ M[B;]| & V/_,) , o
Vie (VA P | (Via+p) | |2 Ve PI Vit (Vi ©P))
J - Jj— s
. Return countZerobits(V}) 5. Return countZerobits(V},)

Fig. 4: The five new 4-operation bit-parallel LLCS algorithms found by our ex-
haustive search. Also preprocessing the complemented M’-vectors is shown.

References

1.

10.

Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and
other sequence similarity measures. In: Proc. 56th Annual IEEE Symposium on
Foundations of Computer Science. pp. 59-78 (2015)

Aho, A.V., Hirschberg, D.S., Ullman, J.D.: Bounds on the complexity of the longest
common subsequence problem. Journal of the ACM 23(1), 1-12 (1976)

Allison, L., Dix, T.L.: A bit-string longest common subsequence algorithm. Infor-
mation Processing Letters 23, 305-310 (1986)

Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proc. 7th International Symposium on String Processing and In-
formation Retrieval. pp. 39-48 (2000)

Crochemore, M., Iliopoulos, C.S., Pinzon, Y.J., Reid, J.F.: A fast and practical
bit-vector algorithm for the longest common subsequence problem. Information
Processing Letters 80, 279-285 (2001)

Hyyro, H.: Bit-parallel LCS-length computation revisited. In: Proc. 15th Aus-
tralasian Workshop on Combinatorial Algorithms. pp. 16-27 (2004)

Kuo, S., Cross, G.R.: An improved algorithm to find the length of the longest
common subsequence of two strings. ACM SIGIR Forum 23(3-4), 89-99 (1989)
Rick, C.: A new flexible algorithm for the longest common subsequence problem.
In: Proc. 6th Annual Symposium on Combinatorial Pattern Matching. Lecture
Notes in Computer Science, vol. 937, pp. 340-351 (1995)

Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM 21(1), 168-173 (1974)

Wu, S., Manber, U., Myers, G., Miller, W.: An O(N P) sequence comparison algo-
rithm. Information Processing Letters 35, 317-323 (1990)

