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Abstract. Given a pattern p = s1x1s2x2 · · · sr−1xr−1sr such that
x1, x2, . . . , xr−1 ∈ {x,←x}, where x is a variable and

←
x its reversal, and

s1, s2, . . . , sr are strings that contain no variables, we describe an algo-
rithm that constructs in O(rn) time a compact representation of all P
instances of p in an input string of length n over a polynomially bounded
integer alphabet, so that one can report those instances in O(P ) time.

Keywords: patterns with variables, matching, repetitions, pseudo-
repetitions

1 Introduction

A pattern is a string consisting of variables (e.g., x, y, z) and terminal letters
(e. g., a, b, c). The terminal letters are treated as constants, while the variables
are letters to be uniformly replaced by strings over the set of terminals (i. e., all
occurrences of the same variable are replaced by the same string); by such a
replacement, a pattern is mapped to a terminal string. Patterns with variables
appeared in various areas of computer science, e.g., stringology and pattern
matching [1], combinatorics on words [19], language and learning theory [2], or
regular expressions with back references [10,23], used in programming languages
like Perl, Java, Python. In such applications, patterns are used to express string
searching questions such as testing whether a string contains regularities.

Here, we consider the so-called one-variable patterns p = s1x1 · · · sr−1xr−1sr
such that, for all z, xz ∈ {x,

←
x}, where x is a variable and

←
x its reversal, and sz

is a string over a set Σ of terminals. An instance of p in a text t is a substring
s1w1 · · · sr−1wrsr of t, with wz = w if xz = x and wz =

←
w if xz =

←
x, for a

non-empty w ∈ Σ∗ called substitution of x. We address the problem of efficiently
finding instances of such patterns in texts.

For example, let p = axabxbc
←
x. An instance of this pattern, if the alpha-

bet of terminals is {a, b, c}, is a abc ab abc bc cba, where x is substituted by abc
(and, consequently,

←
x by cba). Another instance is a aaabbb ab aaabbb bc bbbaaa

if x is substituted by aaabbb. Both these instances occur in the text t =
aabcababcbccbaaaabbbabaaabbbbcbbbaaa: the former instance starts at position
1 and the later starts at position 14. These two instances overlap at position 14.
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Our motivation for studying such patterns is two-fold. Firstly, the efficient
matching of several classes of restricted patterns was analyzed in [9] and connected
to algorithmic learning theory [8]. Generally, matching patterns with variables to
strings is NP-complete [7], so it seemed an interesting problem to find structurally
restricted classes of patterns for which the matching problem is tractable. As
such, finding all occurrences of a one-variable pattern in a word occurred as
basic component in the matching algorithms proposed in [9] for patterns with a
constant number of repeated variables or for non-cross patterns (patterns that
do not have the form ..x..y..x..).

Secondly, our work extends the study of pseudo-repetitions (patterns from
{x,←x}∗). The concept of pseudo-repetitions (introduced in [6], studied from
both combinatorial [21] and algorithmic [24,13] points of view) draws its original
motivations from important biological concepts: tandem repeat, i.e., a consecutive
repetition of the same sequence of nucleotides; inverted repeat, i.e., a sequence of
nucleotides whose reversed image occurred already in the longer DNA sequence
we analyze, both occurrences (original and reversed one) encoding, essentially,
the same genetic information; or, hairpin structures in the DNA sequences, which
can be modeled by patterns of the form s1xs2

←
xs3. More interesting to us, from

a mathematical point of view, pseudo-repetitions generalize both the notions of
repetition and of palindrome, central to combinatorics on words and applications.
The one-variable pattern model we analyze generalizes naturally the mathematical
model of pseudo-repetition by allowing the repeated occurrences of the variable
to be separated by some constant factors.

Thus, we consider the next problem, aiming to improve the detection of
pseudo-repetition [13], as well as a step towards faster detection of occurrences
of restricted patterns [9,8].

Problem 1. Given a string t ∈ Σ∗ of length n and a pattern p =
s1x1 · · · sr−1xr−1sr such that, for 1 ≤ z ≤ r − 1, xz ∈ {x,

←
x} where x /∈ Σ

is a variable and
←
x its reversal, and sz ∈ Σ∗ for 1 ≤ z ≤ r, report all P instances

of p in t (in a form allowing their retrieval in O(P ) time).

We assume that t and all strings sz, for z = 1, . . . , r, are over an integer alphabet
Σ = {0, 1, . . . , nO(1)}, and that we use the word RAM model with Θ(log n)-bit
machine words1 (w.l.o.g., assume that log n is an integer). In this setting, we
propose an algorithm that reports in O(rn) time all instances of p in t in a
compactly encoded form, which indeed allows us to retrieve them in O(P ) time.
Our approach is based on a series of deep combinatorics on words observations,
e.g., regarding the repetitive structure of the text, and on the usage of efficient
string-processing data structures, combining and extending in novel and non-
trivial ways the ideas from [9,13,17].

If the pattern contains only a constant number of variables (e.g., generalized
squares or cubes with terminals between the variables), our algorithm is asymptot-
ically as efficient as the algorithms detecting fixed exponent (pseudo-)repetitions.
For arbitrary patterns, our solution generalizes and improves the results of [13],

1 Hereafter, log denotes the logarithm with base 2.



Detecting One-variable Patterns 3

where an O(r2n)-time solution to the problem of finding one occurrence of a
one-variable pattern with reversals (without terminals) was given. Here, compared
to [13], we work with patterns that contain both variables and terminals and
we detect, even faster, all their instances. Also, we improve the results of [9] in
several directions: as said, we find all instances of a one-variable pattern (in [9]
such a problem was solved as a subroutine in the algorithm detecting non-cross
patterns, and only some instances of the patterns were found), our algorithm is
faster by a log n factor, and our patterns also contain reversed variables.

In this paper, we omit most of the technicalities of the solution to Problem 1
from the main part, and prefer to keep the presentation at an intuitive level; the
full proofs are available in Appendix.

2 Preliminaries

Let w be a string of length n. Denote |w| = n. The empty string is denoted
by ε. We write w[i] for the ith letter of w and w[i..j] for w[i]w[i+1] · · ·w[j]. A
string u is a substring of w if u = w[i..j] for some i ≤ j. The pair (i, j) is not
necessarily unique; we say that i specifies an occurrence of u in w. A substring
w[1..j] (resp., w[i..n]) is a prefix (resp. suffix ) of w. The reversal of w is the
string

←
w = w[n] · · ·w[2]w[1]; w is a palindrome if w =

←
w. For any i, j ∈ R,

denote [i..j] = {k ∈ Z : i ≤ k ≤ j}, (i..j] = [i..j] \ {i}, [i..j) = [i..j] \ {j},
(i..j) = [i..j) ∩ (i..j]. Our notation for arrays is similar to that for strings, e.g.,
a[i..j] denotes an array indexed by the numbers [i..j]: a[i], a[i+1], . . . , a[j].

In Problem 1 we are given an input string (called text) t of length n and
a pattern p = s1x1s2x2 · · · sr−1xr−1sr such that, for z ∈ [1..r), xz ∈ {x,

←
x}

and s1, s2, . . . , sr are strings that contain no x nor
←
x. For the simplicity of

exposure, we can assume x1 = x. An instance of p in the text t is a substring
t[i..j] = s1w1s2w2 · · · sr−1wr−1sr such that, for z ∈ [1..r), wz = w if xz = x, and
wz =

←
w if xz =

←
x, where w is a string called a substitution of x;

←
w is called a

substitution of
←
x. We want to find all instances of p occurring in t.

An integer d > 0 is a period of a string w if w[i] = w[i+d] for all i ∈ [1..|w|−d];

w is periodic if it has a period ≤ |w|2 . For a string w, denote by pred(w) and
sufd(w), respectively, the longest prefix and suffix of w with period d. A run of a
string w is a periodic substring w[i..j] such that both substrings w[i−1..j] and
w[i..j+1], if defined, have strictly greater minimal periods than w[i..j]. A string
w is primitive if w 6= vk for any string v and any integer k > 1.

Lemma 2 (see [5]). A primitive string v occurs exactly twice in the string vv.

Lemma 3. Let R be the set of all runs of t, whose period is at least three
times smaller than the length of the run (such runs are called cubic). Then∑

s∈R |s| ∈ O(n log n).

Proof. Consider a run t[i..j] ∈ R with the minimal period p. Since a primitively
rooted square of length 2p occurs at any position k ∈ [i..j−2p+1], the sum∑
s∈R |s| is upper bounded by three times the number of primitively rooted



4 D. Kosolobov, F. Manea, and D. Nowotka

squares occurring in t. At each position of t, at most 2dlog ne primitively rooted
squares may occur (see, e.g., [5]), so the result follows. ut

In solving Problem 1, we use a series of preprocessing steps. First, we find all
runs in t in O(n) time using the algorithm of [3] and, using radix sort, construct
lists Rd, for d = 1, 2, . . . , n, such that Rd contains the starting positions of all runs
with the minimal period d in increasing order. We produce from Rd two sublists
R′d and R′′d containing only the runs with the lengths ≥ log n and ≥ log log n,
respectively (so that R′d is a sublist of R′′d). The following lemma provides us fast
access to the lists Rd, R

′
d, R

′′
d from periodic substrings of t.

Lemma 4 ([15, Lemma 6.6]). With O(n) time preprocessing, we can decide
in O(1) time for any substring t[i..j] of t whether it is periodic and, if so, compute
its minimal period d and find in Rd, R′d, or R′′d the run containing t[i..j].

For i, j ∈ [1..n], let lcp(i, j) and
←−
lcp(i, j) be the lengths of the longest common

prefixes of the strings t[i..n], t[j..n] and
←−−−
t[1..i],

←−−−
t[1..j], respectively. In O(n) time

we build for the string t
←
t the longest common prefix data structure (for short,

called the lcp structure) that allows us retrieving the values lcp(i, j) and
←−
lcp(i, j)

for any i, j ∈ [1..n] in O(1) time (see [14,5]). Thus, to check if the substrings of
length ` starting (resp., ending) at positions i and j in the string t are equal, we

just check whether lcp(i, j) ≥ ` (resp.,
←−
lcp(i, j) ≥ `). As a side note, we essentially

use that we can compare the reversed image of two substrings of t using the lcp

structure built for t
←
t .

With the lcp structure, it is easy to solve Problem 1 in O(rn2) time: we first
apply any linear pattern matching algorithm to find in O(rn) time all occurrences
of the strings s1, s2, . . . , sr in t and then, for every position i ∈ [1..n] of t and
every ` ∈ [0..n], we check in O(r) time whether an instance s1w1 · · · sr−1wr−1sr
of the pattern p, with ` = |w1| = · · · = |wr−1|, occurs at position i.

General strategy. For each z ∈ [1..r], using a pattern matching algorithm (see [5]),
we fill in O(n) time a bit array Dz[1..n] where, for i ∈ [1..n], Dz[i] = 1 iff sz
occurs at position i. Assume that p contains at least two occurrences of the
variable, i.e., p /∈ {s1xs2} (in the case p = s1xs2 each instance of p is given by
an occurrence of s1, stored in D1, followed by an occurrence of s2, stored in D2).

Let α = 4
3 . For each k ∈ [0.. logα n], our algorithm finds all instances of p that

are obtained by the substitution of x with strings of lengths from ( 3
2α

k..2αk].
Clearly, the intervals ( 3

2α
k..2αk] do not intersect and their union covers the

interval [2..n]. In this manner, our algorithm obtains all instances of p with
substitutions of x of length at least two. The remaining instances, when the
string substituting x has length one or zero, can be easily found in O(rn) time
using the arrays {Dz}rz=1.

So, let us fix k ∈ [0.. logα n] and explain our strategy for this case. Suppose
that, for i, j ∈ [1..n], t[i..j] = s1w1s2w2 · · · sr−1wr−1sr is an instance of p and
3
2α

k < |w1| = · · · = |wr−1| ≤ 2αk; then w1 contains a substring v of length
dαke starting, within t, either at position q1 = hdαke + 1 or at position q1 =
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hdαke+ b dα
ke
2 c for some integer h ≥ 0. Based on this observation, we consider

all choices of a substring v of t, with length dαke, starting at positions hdαke+ 1

and hdαke+ b dα
ke
2 c for h ≥ 0. Such a string v acts as a sort of anchor: it restricts

(in a strong way, because of its rather large length with respect to |w1|) the
positions where w1 may occur in t, and copies of either v or

←
v should also

occur in all w2, . . . , wr−1, thus restricting the positions where these strings may
occur in t, as well. Based on a series of combinatorial observations regarding
the way such substrings v occur in t, and using efficient data structures to store
and manipulate these occurrences, we find all corresponding instances of p that

contain v in the substitution of x1 in O(r + r|v|
logn ) time plus O( logn

log logn ) time if
logn

16 log logn ≤ |v| ≤ log n. We discuss two cases: v is non-periodic or periodic.

In the first case, distinct occurrences of v (or
←
v ) in t do not have large overlaps,

so we can detect them rather fast, as described in Lemma 6: for λ = |s2|, we
preprocess a data structure that allows us to efficiently find all occurrences of v
or
←
v at the distance λ to the right of v and these occurrences serve as additional

anchors inside the substitution w2; note that the case of very short v requires a
separate discussion. Hence, the distinct instances of p where the substitution of
x contains a certain non-periodic v also do not have large overlaps (which means,
as well, that they are not too many), and they can be identified (and stored, as
described in Lemma 7) by trying to align occurrences of the strings s1, . . . , sr in
a correct manner around the found v’s.

Then we consider the case when v is periodic. Then, the occurrences of v or
←
v

corresponding to different instances of p might have large overlaps and form runs,
so we analyze the runs structure of t. Consider, for the simplicity of exposure,
a typical example: t = (abc)m contains Θ(|t|2) instances of p = xcxcabcxcxcxca
with substitutions x = ab(cab)k, for different k. The point in this example is that
almost all substitutions are periodic and are contained in one run with the same
minimal period. We can encode these instances by an arithmetic progression:
for all 0 ≤ h ≤ m−7, 0 ≤ k ≤ m−h−7, there is an instance of p starting at
position 1+3h of t with substitution of length 2+3k. It turns out, as described in
Lemmas 13 and 15, that, for any pattern p, all instances of p whose substitutions
are periodic substrings of one run with the same minimal period can be encoded
by similar arithmetic progressions.

Consider now another relevant example: t = (abc)`d(abc)m contains Θ(|t|)
instances of p = xxdxabcxx with substitutions x = (abc)k. All these instances
can be encoded as follows: for all k = 0, 1, . . . ,min{`,m}, there is an instance of
p starting at position 1+3`−3k with substitution of length 3k. So, the letter d
“separates” the image of p into two runs, breaking the period of the first run. As
shown in Lemmas 11 and 12, there might exist only a constant number of such
“separators” in a general p and all instances of p, with the image x periodic, and
which lie in two runs with the same minimal period, split by a given “separator”,
can be encoded by similar arithmetic progressions (the analysis of this case is
similar to the analysis of in-a-run instances, so, it is moved in Appendix).

If the substitutions in an instance of p lie in three or more runs (so, also
there are more points where the period breaks inside each instance of p), then
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we can find the possible occurrences of v (which are periodic, so they must avoid
period-breaking points that separate the runs contained in p) and, consequently,
find the instances of p. The combinatorics of such instances of the pattern is
discussed in Lemmas 8, 9: the essential idea is that the occurrences of v and
←
v in p and the substrings connecting them form runs, separated by substrings
which break the periodicity; these substrings should correspond to substrings
that interrupt runs in t. The actual algorithm identifying and storing these
instances of the pattern follows from Lemmas 10, 11, 12 (and the comments
connecting them).

Finally, since there are O( n
αk

) such substrings v and at most O(n/ logn
log logn )

of them (for all k = 0, 1, . . . in total) are such that logn
16 log logn ≤ |v| ≤ log n, the

overall time is O(
∑logα n
k=0

n
αk

(r + rαk

logn ) + (n/ logn
log logn ) logn

log logn ) = O(rn).
The details of all the cases considered in our approach are given in Sections 3

and 4, following the general strategy described above. Summing up, we get:

Theorem 5. Problem 1 can be solved in O(rn) time.

3 Non-periodic Anchor Substring v

As described in the General Strategy paragraph, we first choose an anchor string v
occurring in w1 and then try to construct an instance of the pattern p around
this v. So, let v be a substring of t of length dαke starting at position q1 = h|v|+1

for some integer h ≥ 0 (the case of position h|v|+ b |v|2 c is similar). As explained
before, we will iterate through all possible values of h, which allows us to identify
all instances of the pattern. For a fixed v, using Lemma 4, we check whether it is
periodic. In this section, we suppose that v is not periodic; the case of periodic v
is considered in Section 4.

Our aim is to find all instances t[i..j] = s1w1s2w2 · · · sr−1wr−1sr of p in
which w1 contains v and has length close to |v|, i.e., i and j must be such that
i+ |s1| ≤ q1 < q1 + |v| ≤ i+ |s1w1| and 3

2 |v| < |w1| = · · · = |wr−1| ≤ 2|v|.
Let t[i..j] be such a substring. It follows from the inequality 3

2 |v| < |w1| ≤
2|v| that we can compute a relatively small interval of t where the v (or

←
v )

corresponding to w2 may occur. More precisely, if w1 = w2 (resp., w1 =
←
w2),

then the string v (resp.,
←
v ) has an occurrence starting at a position from the

interval [q1 + |vs2|..q1 + |vvs2v|]. Since v is not periodic, the length of the overlap

between any two distinct occurrences of v is less than |v|2 . Hence, there are at
most four occurrences of v (resp.,

←
v ) starting in [q1 + |vs2|..q1 + |vvs2v|]. To find

these occurrences, our algorithm applies the following general lemma for λ = |s2|.

Lemma 6. Let λ ≥ 0 be an integer. We can preprocess the text t of length n
in O(n) time to produce data structures allowing us to retrieve, for any given
non-periodic substring v = t[q..q′−1], all occurrences of v and

←
v starting in the

substring t[q′ + λ..q′ + λ+ 2|v|] in:

– O( |v|logn ) time if |v| > log n,
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– O( logn
log logn ) time if logn

16 log logn ≤ |v| ≤ log n, and

– O(1) time otherwise.

Proof. For i ∈ [1..n], let ti = t[i..i+ log n − 1] be the substring of length log n
starting at position i in t. Let S be the set of all distinct strings ti. Using the
suffix array of t, its lcp structure, and radix sort, we construct in O(n) time the
set of arrays {As}s∈S such that, for any s ∈ S, As contains the starting positions
of all occurrences of s in t in ascending order. Essentially, for each s ∈ S, we
locate an occurrence of s in t and then produce a “cluster” of the suffix array
of t with the suffixes starting with s, then we radix sort (simultaneously) the
positions in these “clusters” (all numbers between 1 and n, keeping track of the
“cluster” from where each position came), to obtain the arrays As. Further, using

the suffix array of the string t
←
t , its lcp structure, and radix sort, we build in

O(n) time arrays of pointers B[1..n] and
←
B[1..n] such that, for i ∈ [1..n], B[i]

(resp.,
←
B[i]) points to the element of Ati (resp., A←

ti
) storing the leftmost position

j with j ≥ i+λ and ti = tj (resp.,
←
ti = tj); B[i] (resp.,

←
B[i]) is undefined if there

is no such j.
The case |v| > log n. In this case, to find all required occurrences of v, we

note that v = t[q..q′ − 1] starts with tq. Thus, we first find all occurrences of
tq starting within the segment [q + λ..q′ + λ + 2|v|]. The sequence of all such
occurrences forms a contiguous subarray in Atq and B[q] points to the beginning
of this subarray.

In a first case, suppose that the distance between any two consecutive positions

stored in this subarray is greater than
|tq|
2 . Then there are at most O( |v||tq| ) =

O( |v|logn ) such occurrences of tq. Some of these occurrences may be extended to
form an occurrence of v, and they must be identified. To check in constant time
whether v occurs indeed at a given position ` of the subarray we use the lcp
structure and verify whether lcp(`, q) ≥ |v|.

The case of the string
←
v is analogous but involves

←
tq and

←
B instead of tq

and B. Hence, we find all required occurrences of v and
←
v in O( |v|logn ) time.

Suppose that the aforementioned subarray of Atq (resp., A←
tq

), containing

the positions of tq (resp.,
←
tq) in the desired range, contains two consecutive

occurrences of tq (resp.,
←
tq) whose starting positions differ by at most

|tq|
2 . Then

tq is periodic. Using Lemma 4, we compute the minimal period d of tq and find, in
O(1) time, the run t[i′..j′] (in the list R′d) containing tq. Recall now that v is not
periodic, so we must have that t[q..j′] is pred(v), the maximal d-periodic prefix of
v, and |pred(v)| < |v|. We now focus on finding the occurrences of tq in the range
[q′ + λ..q′ + λ+ 2|v|]. Since R′d contains only runs of length ≥ log n and any two
runs with period d cannot overlap on more than d− 1 letters, there are at most

O( |v|logn ) runs in R′d that overlap with the segment [q + λ..q′ + λ+ 2|v|]. These

runs can be all found in O( |v|logn ) time. Some of them may end with pred(v) and

may be extended to the right to obtain an occurrence of v (resp.,
←
v ). If t[i′′..j′′]
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is one of the runs we found, then there might be an occurrence of v starting at
position j′′− j′+ q or an occurrence of

←
v ending at position i′′+ j′− q. So, using

the lcp structure, in a similar way as before, we find all required occurrence of v

(resp.,
←
v ) in O( |v|logn ) time.

It remains to consider how to find all occurrences of v = t[q..q′−1] (resp.,
←
v )

starting in the segment [q′+λ..q′+λ+2|v|] in the case logn
16 log logn ≤ |v| ≤ log n and

|v| < logn
16 log logn .

The case logn
16 log logn ≤ |v| ≤ log n. This case is similar to the case |v| > log n.

For i ∈ [1..n−blog lognc], define t′i = t[i..i+blog log nc]. Let S′ be the set of all
distinct strings t′i. In the same way as in the case |v| > log n, using the suffix
array of t, its lcp structure, and radix sort, we construct in O(n) time the set of
arrays {A′s′}s′∈S′ such that, for any s′ ∈ S′, A′s′ contains the starting positions
of all occurrences of s′ in t in ascending order. Further, using the suffix array of

the string t
←
t , its lcp structure, and radix sort, we build in O(n) time arrays of

pointers B′[1..n] and
←

B′[1..n] such that, for i ∈ [1..n], B′[i] (resp.,
←

B′[i]) points
to the element of A′t′i

(resp., A′←
t′i

) storing the leftmost position j with j ≥ i+ λ

and t′i = t′j (resp.,
←

t′i = t′j); B
′[i] (resp.,

←

B′[i]]) is undefined if there is no such j.
Now we proceed like in the case |v| > log n but use t′q instead of tq, the arrays

A′t′q , B
′,
←

B′ instead of Atq , B,
←
B, and the list R′′d instead of R′d. The processing

takes O( |v|
log logn ) = O( logn

log logn ) time.

The case |v| < logn
16 log logn . Using radix sort, we can reduce the alphabet of

t to [0..n) in O(n) time; let $ be a new letter. For h ∈ [0.. n
logn ), let eh =

t[h log n+1..h log n+2 log n] and fh = t[h log n+λ..h log n+λ+5 log n] assuming
$ = t[n+1] = t[n+2] = . . ., so that eh and fh are well defined. Note that v is a
substring of eh for h = b q−1lognc and, if there is an occurrence of v (resp.,

←
v ) starting

in the segment [q′ + λ..q′ + λ+ 2|v|], then this occurrence is a substring of fh.
For each h ∈ [0.. n

logn ), our algorithm constructs a string gh = eh$fh and

reduces the alphabet of gh to [1..|gh|] as follows. Let E[0..n] be an array of integers
filled with zeros. While processing gh, we maintain a counter c; initially, c = 0. For
i = 1, 2, . . . , |gh|, we check whether E[gh[i]] = 0 and, if so, assign c← c+ 1 and
E[gh[i]]← c. Regardless of the result of this check, we perform gh[i]← E[gh[i]].
Once the alphabet of gh is reduced, we clear all modified elements of E using
an unmodified copy of gh and move on to gh+1. Thus, the reductions of the

alphabets of all gh take O(n+
∑bn/ lognc
h=0 |gh|) = O(n) overall time.

Each letter in a string gh fits in dlog(|gh|+ 1)e ≤ 2dlog log ne bits. Hence, the
substrings of gh corresponding to the substrings v = t[q..q′−1] and t[q′ + λ..q′ +
λ + 3|v|] together fit in 8|v|dlog log ne ≤ logn

2 bits. Thus, we can perform the
searching of v (resp.,

←
v ) in t[q′+λ..q′+λ+3|v|] in O(1) time using a precomputed

table of size O(2
logn

2 ) = O(
√
n). ut

Recall that q1 was the starting point of v (for simplicity, assume that v =
t[h1..h2], where h1 is an alias of q1 that is only used for the uniformity of
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the notation). Let q2 ∈ [q1 + |vs2|..q1 + |vs2vv|] be the starting position of an
occurrence of v (or

←
v ) found by Lemma 6. We now want to see whether there

exists an instance of the pattern that has the anchor v from w1 occurring at
position q1 and the corresponding v (resp.,

←
v ) from w2 occurring at q2.

If x1 = x2 (and, consequently, w1 = w2), then β = q2 − q1 − |s2| is the length
of substitution w1 of x that could produce the occurrence of v at position q2.
Once the length β is computed, we get that w1 can start somewhere between
h2 − β − |s1| and q1 − |s1| = h1 − |s1|, so all corresponding instances of p will
start in the interval [h2−β−|s1|+1..h1−|s1|]. These instances (determined by
h1 = q1, |v|, and β) can be found by the following lemma (see the case x1 6= x2
in Appendix).

For a given β, let Lp(β) = |s1s2 · · · sr|+ (r − 1)β, that is, the length of the
image of the pattern p when x is substituted by a variable of length β.

Lemma 7. Given a substring t[h1..h2] = v and an integer β ≥ |v|, we can
compute a bit array occ[h2−β−|s1|+1..h1−|s1|] such that, for any i, we have
occ[i] = 1 iff the string t[i..i+Lp(β) − 1] is an instance of p containing v in
its substring that corresponds to w1 (i.e., i + |s1| ≤ h1 < h2 < i + |s1| + β).
This computation takes O(r+ rβ

logn ) time, to which we add O( logn
log logn ) time when

logn
16 log logn ≤ |v| ≤ log n.

Proof. The general idea of the proof is as follows. Knowing where v (which
anchors w1, which substitutes x) starts and knowing the length |w1|, we know,
if x1 = · · · = xr−1, where the corresponding occurrences of v from w2, . . . , wr−1
should be positioned (the case when xi 6= xj , for some i 6= j, is analyzed using
more complicated ideas, e.g., from [4]; see Appendix). We check, in O(r) time, if
they indeed occur at those positions. Suppose this checking succeeds. These v’s
might correspond to more instances of p as in Fig. 1. We further check where the
wz’s corresponding to occurrences of x in p may occur.

Fig. 1: Two instances of the pattern p = bxabxx.

To this end, we measure how much can we extend simultaneously, with
the same string to the left (respectively, to the right), the occurrences of v
corresponding to these wi’s. This will give us ranges of the same length, around
each of the v’s, that contain all possible wi’s. We follow a similar strategy for
the wj ’s corresponding to

←
x in p (see the details below). Now, all it remains is to
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see whether we can glue together some occurrences of w1, w2, . . . , wr from the
respective ranges, by identifying between them exactly the strings s1, s2, . . . , sr.
This is be done efficiently using the arrays storing the occurrences of the si’s,
and standard bitwise operations. Let us formalize this explanation.

For z ∈ [1..r), denote qz = h1 + |s2s3 · · · sz| + (z−1)β. Denote by Z (resp.,
←
Z) the set of all z ∈ [1..r) such that xz = x (resp., xz =

←
x). If there is an

instance t[i..j] = s1w1s2w2 · · · sr−1wr−1sr of p such that |w1| = · · · = |wr−1| = β

and i + |s1| ≤ h1 < h2 < i + |s1w1|, then, for any z, z′ ∈ Z (resp., z, z′ ∈
←
Z),

t[qz..qz+|v|−1] = t[qz′ ..qz′+|v|−1]. We check these equalities in O(r) time using
the lcp structure. Suppose this checking succeeds. There might exist many
corresponding instances of p as in Fig. 1.

We can immediately calculate the numbers b` = min{
←−
lcp(qz−1, qz′−1) :

(z, z′) ∈ (Z × Z) ∪ (
←
Z ×

←
Z)} and br = min{lcp(qz+|v|, qz′+|v|) : (z, z′) ∈ (Z ×

Z)∪ (
←
Z ×

←
Z)} in O(r) time. Assume that t[i..j] = s1w1s2w2 · · · sr−1wr−1sr is an

instance of p with |w1| = · · · = |wr−1| = β and i+ |s1| ≤ h1 < h2 < i+ |s1w1|.
By the definition of b` and br, we then necessarily have qz − δ ≥ qz − b` and
qz − δ + β ≤ qz + |v|+ br for all z ∈ [1..r), where δ = h1 − (i+ |s1|).

Thus, the next segments are non-empty (see Fig. 1):
Sz = [qz − |sz| − b` .. qz−1 + |v|+ br] ∩ [qz−1 + |v| .. qz − |sz|] for z ∈ (1..r),
S1 = [q1 − |s1| − b` .. q1 − |s1|] ∩ [q1 + |v| − |s1| − β .. q1 − |s1|],
Sr = [qr−1 + |v| .. qr−1 + |v|+ br] ∩ [qr−1 + |v| .. qr−1 + β].

Further, if such instance t[i..j] exists, then there is a sequence of positions
{iz}rz=1 such that iz ∈ Sz, Dz[iz] = 1 for z ∈ [1..r] and iz+1 − iz = |sz| + β
for z ∈ [1..r) (namely, i1 = i). If x1 = · · · = xr−1, then the converse is also
true: if a sequence {iz}rz=1 satisfies all these conditions, then t[i1..ir+|sr|−1] =
s1ws2w · · · sr−1wsr, where |w| = β and i+ |s1| ≤ h1 < h2 < i+ |s1|+ β. The bit
arrays {Dz}rz=1 help us to find all such sequences.

Let D′1=D1[q1+|v|−|s1|−β..q1−|s1|], D′r=Dr[qr−1+|v|..qr−1+β] and D′z =
Dz[qz−1+|v|..qz−|sz|] for z ∈ (1..r). For each z ∈ [1..r], we clear in the array D′z
all bits corresponding to the regions that are not covered by the segment Sz
and then perform the bitwise “and” of D′1, . . . , D

′
r; thus, we obtain a bit array

D[0..β−|v|] (see Fig. 1). If x1 = · · · = xr−1, then, for any i ∈ [0..β−|v|], we have
D[i] = 1 iff there is a string s1ws2w · · · sr−1wsr starting at i′ = h2−β−|s1|+i+1
such that |w| = β and i′ + |s1| ≤ h1 < h2 < i′ + |s1w|. Obviously, one can put
occ[h2−β−|s1|+1..h1−|s1|] = D[0..β−|v|]. Since the length of each of the arrays
D′1, . . . , D

′
r does not exceed β, all these calculations can be done in O(r+ rβ

logn )

time by standard bitwise operations on the Θ(log n)-bit machine words.

If p contains both x and
←
x, it is not clear how to check whether the substi-

tutions of x and
←
x corresponding to a given D[i] = 1 respect each other. The

case when p contains both x and
←
x turns out to be much more difficult; see

Appendix. ut
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4 Periodic Anchor Substring v

In this section we suppose v is periodic. Recall that v starts at q1 and we also
know its length. By Lemma 4, we find in O(1) time the minimal period d of v
and a run t[i′..j′] with period d containing v (i.e., i′ ≤ q1 < q1 + |v| − 1 ≤ j′).

Just like before, we are searching for instances t[i..j] = s1w1 · · · sr−1wr−1sr
of p such that 3

2 |v| < |w1| ≤ 2|v| and v occurs in w1, so at least |s1| symbols
away from i (in other words, i+ |s1| ≤ q1 < q1 + |v| ≤ i+ |s1w1|). Let us assume
that t[i..j] is such an instance. Then, either w1 has period d or one of the strings
v′ = t[q1..j

′+1] or v′′ = t[i′−1..q1+|v|−1] is a substring of w1 (that is, the run
containing v ends or, respectively, starts strictly inside w1).

Suppose first that w1 contains v′ as a substring (the case of v′′ is similar);
note that v′ is the suffix of the run t[i′..j′] starting at position q1, to which a
letter that breaks the period was added. One can show that, since the minimal
period of t[q1..j

′] is d, 2d ≤ j′ − q1 + 1, and t[j′+1] 6= t[j′+1−d], the string v′ is
not periodic. Hence, v′ can be processed in the same way as v in Section 3, and
get the instances of p that occur around it. A similar conclusion is reached when
w1 contains v′′, so we assume in the following that w1 is periodic.

Suppose that w1 has period d. Periodic substitutions of x (such as w1) can
produce a lot of instances of p: e.g., an contains Θ(n2) instances of xx. However,
it turns out that when such multiple instances really occur, they have a uniform
structure that can be compactly encoded and appear only when all substitutions
of x and

←
x lie either within one or two runs. Before the discussion of this case,

let us first consider the case when three or more runs contain w1, . . . , wr−1. Due
to space constraints, some proofs are moved to Appendix.

Three and more runs. Let t[i..j] be an instance of p with a substitution of x1 = x
denoted by w1 = w and such that w has period d. Moreover, for our chosen v
starting at position q1, we still have 3

2 |v| < |w| ≤ 2|v| and v occurs inside w1

(i.e., i+ |s1| ≤ q1 < q1 + |v| ≤ i+ |s1w|). Since |v| ≥ 2d, we have |w| ≥ 3
2 |v| ≥ 3d.

Clearly, each substitution of x or
←
x in t[i..j] is contained in some run with period

d (some of these runs may coincide). It turns out that if all substitutions of x
and

←
x in t[i..j] are contained in at least three distinct runs with period d, then

there are only constantly many possibilities to choose the length |w|, and these
possibilities can be efficiently found and then processed by Lemma 7 to find the
instances of the pattern. To begin with, let us introduce several lemmas; in their
statements w and s are strings (extensions for reversals are given in Appendix).

Lemma 8. Let ws be a substring of t such that w has period d, |w| ≥ 3d, and ws
does not have period d. Let t[i..j] be a run with period d containing w and let h be
the starting position of s. Then, either h = j−|pred(s)|+ 1 or h ∈ (j+1−d..j+1].

Proof. Suppose that h ≤ j + 1 − d. Then, |pred(s)| ≥ j − h + 1 ≥ d. Thus,
since t[j+1] 6= t[j+1−d], |pred(s)| must be equal to j − h + 1 and hence h =
j − |pred(s)|+ 1. ut
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Lemma 9. Let wsw (resp.,
←
wsw) be a substring of t such that w has period d,

|w| ≥ 3d, and wsw (resp.,
←
wsw) does not have period d. Let t[i..j] be a run with

period d containing the first occurrence of w (resp.,
←
w) in wsw (resp.,

←
wsw).

Denote by h the starting position of s. Then, we have h = j − |pred(s)|+ 1 or
h ∈ (j+1−d..j+1] or h ∈ (j−|s|−d..j−|s|].

Proof. If h + |s| > j, then, by Lemma 8, either h = j − |pred(s)| + 1 or h ∈
(j+1−d..j+1]. Suppose that h + |s| ≤ j. Let t[i′..j′] be a run with period d
containing the last occurrence of w in wsw (resp.,

←
wsw). Clearly, i′ ≤ h + |s|.

Hence, since t[i..j] and t[i′..j′] cannot overlap on d letters, we obtain j − d+ 1 <
h+ |s|. Therefore, h ∈ (j−|s|−d..j−|s|]. ut

As the string w is periodic, but the whole image of p is not (it extends over
three or more runs), some of the strings sz must break the period induced by w.
If we can identify the sz’s which break the period, Lemmas 8 and 9 allow us to
locate their occurrences which, together with the v we considered, might lead to
finding corresponding instances of p. The next lemma formalizes these ideas (its
proof, especially for the patterns containing both x and

←
x, is rather non-trivial

and uses results from [11,12,18,20,22]; see Appendix.

Lemma 10. Let v = t[h1..h2] be a string with the minimal period d ≤ |v|
2 .

Given z, z′ such that 1 < z < z′ < r, we can find all instances t[i..j] =
s1w1s2w2 · · · sr−1wr−1sr of p such that 3

2 |v| < |w1| ≤ 2|v|, v is contained in
w1, w1s2w2 · · · sz−1wz−1 and wzsz+1wz+1 · · · sz′−1wz′−1 both have period d, and

wz−1szwz and wz′−1sz′wz′ both do not have period d, in O(r + r|v|
logn ) time. To

this we add O( logn
log logn ) time if logn

16 log logn ≤ |v| ≤ log n.

It remains to explain how to identify the sz’s that break the period inside the
instances of p, and show that their number is O(1). Let Z (resp., Z ′, Z ′′) be the
set of all numbers z ∈ (1..r) such that xz−1 = xz (resp.,

←
xz−1 = xz =

←
x, xz−1 =

←
xz =

←
x). By Lemma 2, as wz ∈ {w,

←
w} for z ∈ [1..r], the next lemma follows:

Lemma 11. For any numbers z1, z2 ∈ Z (resp., Z ′, Z ′′), if the strings
wz1−1sz1wz1 and wz2−1sz2wz2 both have period d, then the next properties hold:

|sz1 | ≡ |sz2 | (mod d), sz1 and sz2 both have period d,
one of sz1 and sz2 (sz1 and

←
s z2 if xz1 6= xz2) is a prefix of another.

(1)

In the following sense, the converse is also true: if |sz1 | ≥ d, wz1−1sz1wz1 has
period d, and z1 and z2 satisfy (1), then wz2−1sz2wz2 necessarily has period d.

We call a pair of numbers (z, z′) such that z ≤ z′ and z, z′ ∈ Z a separation
in Z if all numbers z1, z2 ∈ ((1..z) ∪ (z..z′)) ∩ Z satisfy (1) and all numbers z1 ∈
((1..z)∪ (z..z′))∩Z and z2 ∈ {z, z′} either do not satisfy (1) or satisfy |sz1 | < d ≤
|sz2 |; separations in Z ′ and Z ′′ are defined analogously. Informally, a pair (z, z′) is
a separation in Z (resp., Z ′, Z ′′) if w1s2 · · · sz−1wz−1 and wzsz+1 · · · sz′−1wz′−1
both have period d, and wz−1szwz and wz′−1sz′wz′ both do not have period d.
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In other words, such a pair indicates exactly the first two sz’s where the
period breaks in an instance of p. Accordingly, if we will apply Lemma 10 for all
pairs (z, z′) such that z and z′ occur in some separations in Z or Z ′ or Z ′′, then
we will find all instances t[i..j] = s1w1s2w2 · · ·wr−1sr of p such that w1, . . . , wr−1
lie in at least three distinct runs with period d, 3

2 |v| < |w1| ≤ 2|v|, and v occurs
in w1. So, it suffices to show that there are at most O(1) possible separations in
Z (resp., Z ′, Z ′′) and, to reach the complexity announced in the General Strategy
section, all such separations can be found in O(r) time.

We describe how to find all separations in Z (the cases of Z ′, Z ′′ are similar).
Clearly, if (z, z′) is a separation, then (z, z) is also a (degenerate) separation. We
find all separations (z, z) ∈ Z applying the following general lemma with Z0 = Z.

Lemma 12. For any subset Z0 ⊆ Z (resp., Z0 ⊆ Z ′, Z0 ⊆ Z ′′), there are at
most three numbers z ∈ Z0 satisfying the following property (2):

any z1, z2 ∈ (1..z) ∩ Z0 satisfy (1),
any z1 ∈ (1..z) ∩ Z0, z2 = z either do not satisfy (1) or |sz1 | < d ≤ |sz2 |.

(2)

All such z can be found in O(r) time.

Proof. Let z′ = minZ0. Clearly, z = z′ satisfies (2). Using the lcp structure on
the string p

←
p , we find in O(r) time the smallest number z′′ ∈ Z0 such that any

z1, z2 ∈ [z′..z′′) ∩ Z0 satisfy (1) and some z1, z2 ∈ [z′..z′′] ∩ Z0 do not satisfy (1);
assume z′′ = +∞ if there is no such z′′. Obviously, if z′′ 6= +∞, then z = z′′

satisfies (2). Any z ∈ (z′′..+∞) ∩ Z0 does not satisfy (2) because in this case
z′′ 6= +∞ and some z1, z2 ∈ [z′..z′′] ∩ Z0 do not satisfy (1). In O(r) time we find
the minimal z′′′ ∈ [z′..z′′) ∩ Z0 such that |sz′′′ | ≥ d; assume z′′′ = z′′ if there
is no such z′′′. By the definition, we have sz1 = sz2 and |sz1 | = |sz2 | < d for
any z1, z2 ∈ [z′..z′′′) ∩ Z0. Therefore, any z ∈ (z′..z′′′) ∩ Z0 does not satisfy (2).
Further, any z ∈ (z′′′..z′′)∩Z0 does not satisfy (2) since in this case z1 = z′′′ and
z2 = z satisfy (1) and |sz1 | ≥ d, which contradicts to (2). Finally, if z′′′ 6= +∞,
then z = z′′′ obviously satisfies (2). So, z′, z′′, z′′′ are the only possible numbers
in Z0 that can satisfy (2). ut

Finally, for each separation (z, z) ∈ Z we have found, we apply Lemma 12
with Z0 = Z \ {z} and obtain all separations in Z of the form (z, z′) for z′ > z.
Employing Lemma 12 at most three times, we obtain at most 9 new separations
in total, in O(r) total time, and, besides the at most three (z, z) separations we
initially had, no other separations exist. So, there are at most 12 separations in Z
and they can be found in O(r) time. Lemma 10 can be now employed to conclude
the identification of the instances of p extending over at least three runs.

In-a-run instances of p. This case requires a different approach. More precisely,
we process each run t[i′..j′] (only once) with period d in order to find all instances
t[i..j] of p satisfying the following properties (denoted altogether as (3)):

t[i..j] is an instance of p with substitutions of x and
←
x of length ≥3d,

t[i+ |s1|..j − |sr|] is a substring of t[i′..j′].
(3)
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So, in this case, we no longer try to extend the string v that anchors the occurrence
of w1, but have a more global approach to finding the instances of the pattern.

To begin with, since t[i′..j′] has period d, we obtain the following lemma.

Lemma 13. Let t[i..j] be a string satisfying (3) such that i′ ≤ i. Then
t[i+(r−1)d..j] is an instance of p and, if i − (r − 1)d ≥ i′, t[i−(r−1)d..j] is
also an instance of p.

Let t[i..j] satisfy (3) and w be a substitution of x in t[i..j]. Recall that x1 = x
and r ≥ 3. We try to get some information on |w|, the length of the substitution of
x. Suppose that p 6= s1xs2

←
xs3 (the case p = s1xs2

←
xs3 is considered in Appendix).

Then, either there is z ∈ (1..r) such that xz−1 = xz or there are z′, z′′ ∈ (1..r)
such that xz′−1sz′xz′ =

←
xsz′x and xz′′−1sz′′xz′′ = xsz′′

←
x. Accordingly, we can

compute the number |w| mod d as follows.

Lemma 14. Let t[i..j] satisfy (3) and w be a substitution of x in t[i..j]. If, for
some z ∈ (1..r), xz−1 = xz, then |w| ≡ −|sz| (mod d); if, for some z′, z′′ ∈ (1..r),

xz′−1sz′xz′ =
←
xsz′x and xz′′−1sz′′xz′′ = xsz′′

←
x, then either |w| ≡ d−|sz′′ |−|sz′ |

2

(mod d) or |w| ≡ −|sz′′ |−|sz′ |2 (mod d).

Proof. Suppose that xz−1 = xz. Since, by Lemma 2, the distance between any
two occurrences of w (or

←
w) in t[i′..j′] is a multiple of d, we have |w| ≡ −|sz|

(mod d).
Suppose that xz′−1sz′xz′ =

←
xsz′x and xz′′−1sz′′xz′′ = xsz′′

←
x. Since w and

←
w both are substrings of t[i′..j′] and |w| ≥ 3d, it follows from Lemma 19 that
there are palindromes u and v such that |uv| = d, v 6= ε, and

←
w is a prefix of

the infinite string (vu)∞. Since wsz′′
←
w is a substring of t[i′..j′] and the strings

vu and uv are primitive, it follows from Lemma 2 that sz′′ = u(vu)k
′

for an
integer k′ and hence |u| = |sz′′ | mod d, |v| = d − |u|. Similarly, since

←
wsz′w is

a substring of t[i′..j′], we have
←
wsz′w = (vu)k

′
v for an integer k′ and therefore

2|w| ≡ |v|−|sz′ | (mod d). Thus, either |w| ≡ |v|−|sz′ |2 (mod d) or |w| ≡ d+|v|−|sz′ |
2

(mod d). Since |v| = (−|sz′′ |) mod d, we obtain either |w| ≡ d−|sz′′ |−|sz′ |
2 (mod d)

or |w| ≡ −|sz′′ |−|sz′ |2 (mod d). ut

We now fix the possible ends of the instances t[i..j] of the pattern p, with

respect to t[i′..j′]. Consider the segments {(j′+1−bd..j′+1−(b−1)d]}fb=1, where
f is the maximal integer such that j′+1−fd ≥ i′ (i.e., f is exponent of the
period in the run t[i′..j′]). For each b ∈ [1..f ], we can find in O(r + rd

logn )

time, using Lemma 15, all strings t[i..j] satisfying (3) such that j−|sr|+1 ∈
(j′+1−bd..j′+1−(b−1)d] (so with s1w1 . . . sr−1wr−1 ending in the respective
segment); the parameter δ in this lemma is chosen according to Lemma 14 (see
below). Adding all up, this enables us to find all instances of p satisfying (3)

in O(r( j
′−i′+1
d + j′−i′+1

logn )) time. Since j′ − i′ + 1 ≥ 3d, it follows from [16] and

Lemma 3 that the sum of the values j′−i′+1
d + j′−i′+1

logn over all such runs t[i′..j′] is

O(n); hence the total time needed to find these instances of the pattern is O(rn).
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Technically, our strategy is given in the following lemma (which does not
cover the case p = s1xs2

←
xs3, which is present in Appendix). In this lemma,

δ ∈ [0..d) is one of the possible values of |w| mod d, as obtained in Lemma 14: if
xz−1 = xz for some z ∈ (1..r), we use only one value δ = −|sz| mod d; otherwise,
we use two values of δ described in Lemma 15 (the special case p = s1xs2

←
xs3 is

considered separately in Appendix). For each thus computed δ, we process each
segment [b1..b2] = (j′+1−bd..j′+1−(b−1)d] and get a compact representation
(in the bit arrays E, F ) of the instances s1w1 . . . sr−1wr−1sr of p such that
s1w1 . . . sr−1wr−1 ends in the respective segment and δ = |w| mod d. The proof
of Lemma 15 is moved to Appendix.

Lemma 15. Let p 6= s1xs2
←
xs3, r ≥ 3, and δ ≤ d. Given a run t[i′..j′] with period

d and a segment [b1..b2] ⊂ [i′..j′+1] of length d, we can compute in O(r+ rd
logn )

time the numbers d′, d′′, h′, h′′, a′, a′′ and bit arrays E[b1..b2], F [b1..b2] such that:

1. for any h ∈ [b1..h
′] (resp., h ∈ (h′..b2]), we have E[h] = 1 iff the strings

t[h−|s1s2 · · · sr−1|−(r−1)(δ+cd)..h+|sr|−1] for all c ∈ [0..d′] (resp., for all
c ∈ [0..d′′]) are instances of p and h− |s1s2 · · · sr−1| − (r − 1)(δ + cd) ≥ i′;

2. for any h ∈ [b1..h
′′] (resp., h ∈ (h′′..b2]), we have F [h] = 1 iff the string

t[h−|s1s2 · · · sr−1|−(r−1)(δ+ad)..h+|sr|−1], where a = a′ (resp., a = a′′),
is an instance of p and h− |s2s3 · · · sr−1| − (r − 1)(δ + ad) ≥ i′.

In addition, we find at most one instance t[i0..j0] = s1w1s2w2 · · ·wr−1sr of p
satisfying (3) and such that j0 − |sr|+ 1 ∈ [b1..b2], |w1| ≡ δ (mod d), and it is
guaranteed that if a string t[i..j] = s1w1s2w2 · · ·wr−1sr satisfies (3), j−|sr|+1 ∈
[b1..b2], and |w1| ≡ δ (mod d), then either t[i..j] is encoded in one of the arrays
E, F or i = i0 and j = j0.

The only case left is of in-two-runs instances of p. To solve this case we
combine (in a rather technical way) the ideas of the previous cases. Instances of
p extending over two runs are determined by separators (as the period breaks
once inside these instances), but the prefix and suffix of each instance, occurring
before, resp. after, the separator can be extended just as in the case of instances
occurring inside a single run, discussed above. The details are given in Appendix.
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Appendix

To Section 3

The continuation of the discussion before Lemma 7. We have v = t[q1..q1+|v|−1].
Let q2 ∈ [q1 + |vs2|..q1 + |vs2vv|] be the starting position of an occurrence of

←
v .

If p = s1xs2
←
xs3 or p = s1

←
xs2xs3, then we apply the following lemma to find

all instances t[i..j] = s1ws2
←
ws3 of p such that 3

2 |v| < |w| ≤ 2|v|, i+ |s1| ≤ q1 <
q1 + |v| ≤ i + |s1w|, and q1 + |v| − (i + |s1|) = (i + |s1ws2w|) − q2; the latter
equality guarantees that the string t[q2..q2+|v|−1] in such instance is a reversal
of t[q1..q1+|v|−1] produced by the substitution

←
w (see Fig. 2).

Lemma 16. Let p = s1xs2
←
xs3 or p = s1

←
xs2xs3. Given a substring t[h1..h2] = v

and a position q > h2 such that t[q..q+|v|−1] =
←
v , we can compute in O(1+ |v|

logn )

time a bit array occ[h1−|s1v|..h1−|s1|] such that, for any i, occ[i] = 1 iff t[i..n]
has a prefix s1ws2

←
ws3 such that h2 − (i + |s1|) = (i + |s1ws2w| − 1) − q and

i+ |s1| ≤ h1 < h2 < i+ |s1w| (see Fig. 2).

Proof. We first test whether (h2 + 1 + q − |s2|)/2 is integer and D2[(h2 + 1 +
q − |s2|)/2] = 1 to check that s2 occurs precisely between the substitutions

of x and
←
x (see Fig. 2). Using the lcp structure for the string t

←
t , we check

in O(1) time that t[h2+1] = t[q−1], t[h2+2] = t[q−2], . . . and find the length

b of the longest common prefix of
←−−−−−−
t[1..h1−1] and t[q+|v|..n]. Then, for each

i ∈ [h1 − |s1| − min{b, |v|}..h1 − |s1|], we have occ[i] = 1 iff D1[i] = 1 and
D3[q + h2 − (i + |s1|) + 1] = 1; for all other i ∈ [h1 − |s1v|..h1 − |s1|], we have
occ[i] = 0. Thus, we obtain occ performing the bitwise “and” of the corresponding
subarray of D1 and the corresponding reversed subarray of D3. The length of both
these subarrays is bounded by |v|. To obtain the reversed subarray efficiently,

we utilize a precomputed table of size O(2
logn

2 ) = O(
√
n) that allows us to

reverse the order of bits in one Θ(log n)-bit machine word in O(1) time. Thus,

the running time of this algorithm is O( |v|logn ). ut

Fig. 2: An instance of p = s1xs2
←
xs3 in the proof of Lemma 16.

Suppose that p starts with s1xs2
←
x but is not equal to s1xs2

←
xs3 (the case

when p starts with s1
←
xs2x is analogous). We are to compute all possible lengths

of the substitutions of x from the range ( 32 |v|..2|v|] that could produce the found
occurrences of v and

←
v starting at positions q1 and q2, respectively. Since v is not

periodic, there are at most four occurrences of v [or
←
v ] starting in the segment

[q2 + |vs3|..q2 + |vs3vv|]. We find all these occurrences with the aid of Lemma 6
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putting λ = |s3|. If x3 = x (resp., x3 =
←
x), then, given the starting position

q3 of an occurrence of v (resp.,
←
v ) such that q3 ∈ [q2 + |vs3|..q2 + |vs3vv|], the

number β = (q3 − q1 − |s2s3|)/2 (resp., β = q3 − q2 − |s3|) is equal to the length
of the corresponding substitution of x that could produce the found occurrences
of v and

←
v starting at q1, q2, and q3. Thus, we obtain a constant number of

possible lengths for substitutions of x and, for each of the found lengths, we
apply Lemma 7.

To discuss the full version of the proof of Lemma 7, we need an additional
tool. A Lyndon root (reversed Lyndon root) of a run t[i..j] of period d is its

lexicographically smallest substring t[`+1..`+d] (resp.,
←−−−−−−−
t[`+1..`+d]) with ` ∈

[i−1..j−d]. The following result is Lemma 1 from [4].

Lemma 17. The leftmost (reversed) Lyndon root of any run in t can be found
in O(1) time assuming O(n) time preprocessing.

Now we are ready to present the proof of Lemma 7, which is full of non-trivial
technical details.

Proof (Lemma 7, continuation). The case when p contains both x and
←
x. For

brevity, denote s(i) = h2 − β − |s1| + i + 1. Our aim is to “filter” the bit
array D[0..β−|v|] so that, for any i, it will be guaranteed that D[i] = 1 iff
there is an instance s1w1s2w2 · · · sr−1wr−1sr of p starting at s(i) and such that
|w1| = · · · = |wr−1| = β and s(i) + |s1| ≤ h1 < h2 < s(i) + |s1| + β. Without
loss of generality, suppose that p has a prefix s1x (the case of the prefix s1

←
x is

symmetrical). For each h ∈ (0..8], we “filter” the subarray D[(y−1)dβ8 e..yd
β
8 e−1]

in O(r + β
logn ) time (assuming D[i] = 0 for i > β − |v| so that these subarrays

are well defined); hence, the overall running time of our filtration algorithm is
O(r + β

logn ).

Fix y ∈ (0..8]. Suppose that there are two positions i, i′ ∈ [(y − 1)dβ8 e..yd
β
8 e)

such that i < i′ and there are two instances of p starting at positions s(i) and
s(i′), respectively, such that the lengths of the substitutions of x in both these
instances are equal to β; denote by w and w′ the corresponding substitutions
of x in these instances. Clearly D[i] = D[i′] = 1. It turns out that in this
case w and w′ both are periodic and, relying on this fact, we will deduce some
regularities in the distribution of positions i′′ ∈ [(y − 1)dβ8 e..yd

β
8 e) such that

t[s(i′′)..s(i′′) + |s1s2 · · · sr|+ (r− 1)β − 1] is an instance of p; so, it will suffice to
assign D[i′′] = 0 for all “non-regular” positions i′′. Let us describe precisely the
nature of these regularities.

Denote γ = i′− i. Fix the minimal number z ∈ (1..r) such that xz =
←
x. Since

γ ≤ β
8 , it follows from Fig. 3 that w and w′ both have period 2γ ≤ β

4 .

Then, for any z′ ∈ [1..r), the string t[s(ydβ8 e) + |s1s2 · · · sz′ | + (z′ −
1)β..s(ydβ8 e)+ |s1s2 · · · sz′ |+(z′−1)β+ dβ2 e] is a substring of the substitutions of
xz′ in the instances of p starting at s(i) and s(i′). Therefore, this string has period
2γ ≤ β

4 . Applying Lemma 4 for this string, we find in O(1) time a run t[iz′ ..jz′ ]
with the minimal period dz′ ≤ 2γ that contains the substitutions of xz′ occurring
at positions s(i) + |s1s2 · · · sz′ |+ (z′ − 1)β and s(i′) + |s1s2 · · · sz′ |+ (z′ − 1)β,
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Fig. 3: Substitutions of x and
←
x in two instances of p.

respectively (note that dz′ might not equal 2γ); the run t[iz′ ..jz′ ] must exist
because otherwise there cannot exist such positions i and i′ corresponding to
two instances of p. The found runs t[i1..j1], t[i2..j2], . . . , t[ir−1..jr−1] are uniquely
determined by y ∈ (0..8] and their choice does not depend on the choice of i or
i′. Moreover, since the choice of i and i′ was arbitrary, it follows that if, for some
i′′ ∈ [(y − 1)dβ8 e..yd

β
8 e), there is an instance of p starting at position s(i′′) with

substitutions of length β, then, for any z′ ∈ [1..r), the substitution of xz′ in this
instance is a substring of t[iz′ ..jz′ ].

We check in O(1) time whether d1 = d2 = · · · = dr−1 (if not, then there cannot
exist such positions i and i′ corresponding to two instances of p). Denote by ` and
`′0, respectively, the starting position of a Lyndon root of t[i1..j1] and the ending
position of a reversed Lyndon root of t[iz..jz]; ` and `′0 can be computed in O(1)

time by Lemma 17. Obviously, we necessarily have
←−−−−−−−
t[`..`+d−1] = t[`′0−d+1..`′0].

We check this condition using the lcp structure on the string t
←
t . It follows

from Lemma 2 that the distance between ` and the starting position of w in
t[i1..j1] must be equal to the distance between `′0 and the ending position of
←
w in t[iz..jz] modulo d, i.e., s(i) + |s1| − ` ≡ `′0 − (s(i) + |s1s2 · · · sz| + zβ − 1)
(mod d) (see Fig. 3). The latter is equivalent to the equality 2s(i) ≡ ` + `′0 −
|s1| − |s1s2 · · · sz| − zβ+ 1 (mod d). The right hand side of this equality, denoted
η, can be calculated in O(r) time. Thus, since the choice of i and i′ was arbitrary,
we have 2s(i′′) ≡ η (mod d) for any i′′ ∈ [(y − 1)dβ8 e..yd

β
8 e) such that the string

t[s(i′′)..s(i′′) + |s1s2 · · · sr|+ (r − 1)β − 1] is an instance of p.

It turns out that, in a sense, the converse is also true. Suppose that i ∈
[(y − 1)dβ8 e..yd

β
8 e), D[i] = 1, 2s(i) ≡ η (mod d), and, for each z′ ∈ [1..r), the

string wz′ = t[s(i)+|s1s2 · · · sz′ |+(z′−1)β..s(i)+|s1s2 · · · sz′ |+z′β−1], which is a
“suspected” substitution of xz′ in the string t[s(i)..s(i)+ |s1s2 · · · sr|+(r−1)β−1],
is contained in the run t[iz′ ..jz′ ]. Choose z′, z′′ ∈ [1..r) such that xz′ = x and
xz′′ =

←
x. If z′ = 1 and z′′ = z, then the equalities 2s(i) ≡ η (mod d) and

←−−−−−−−
t[`..`+d−1] = t[`′0−d+1..`′0] imply that wz′ = wz′′ . It follows from the equality
D[i] = 1 that, for any z′, z′′ ∈ [1..r), if xz′ = xz′′ , then wz′ = wz′′ . Therefore, the
string t[s(i)..s(i) + |s1s2 · · · sr|+ (r − 1)β − 1] is an instance of p.

It is easy to verify that 2s(i) ≡ η (mod d) iff either s(i) ≡ η
2 (mod d) or

s(i) ≡ η+d
2 (mod d). So, using an appropriate bit mask and the bitwise “and”

operation on Θ(log n)-bit machine words, we can assign D[i′′] = 0 for all i′′ ∈
[(y−1)dβ8 e..yd

β
8 e) such that 2s(i′′) 6≡ η (mod d) in O( β

logn ) time. Then, according

to the starting and ending positions of the runs t[i1..j1], . . . , t[ir−1..jr−1], we
calculate in an obvious way in O(r) time the exact subrange [k1..k2] ⊂ [(y −
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1)dβ8 e..yd
β
8 e) such that, for any i ∈ [k1..k2] and any z′ ∈ [1..r), the string

t[s(i) + |s1s2 · · · sz′ | + (z′ − 1)β..s(i) + |s1s2 · · · sz′ | + z′β − 1] (a “suspected”
substitution of xz′) is a substring of t[iz′ ..jz′ ]. Finally, we fill the subarrays
D[(y − 1)dβ8 e..k1 − 1] and D[k2 + 1..ydβ8 e − 1] with zeros in O( β

logn ) time.
If something was wrong in the above scenario or simply the final array

D[(y − 1)dβ8 e..yd
β
8 e−1] contains only zeros, then we still can have exactly one

position i ∈ [(y− 1)dβ8 e..yd
β
8 e) such that t[s(i)..s(i) + |s1s2 · · · sr|+ (r− 1)β − 1]

is an instance of p. The minimal period of the substitution of x in such instance
will necessarily be greater than β

4 (otherwise, we would find this instance by
the above filtering algorithm). Note that such instance of p should contain the
substring t[s(ydβ8 e) + |s1|..s(ydβ8 e) + |s1|+ dβ2 e] in the substitution of x1. Thus,
the substitution of xz−1 = x (recall that x1 = x and z is the minimal number
such that xz =

←
x) in such instance should contain the substring µ = t[q..q+ dβ2 e],

where q = s(ydβ8 e) + |s1s2 · · · sz−1|+ (z − 2)β.

Suppose that the minimal period of µ is greater than β
4 ; since β

4 ≤
|µ|
2 , this

condition can be checked in O(1) time by Lemma 4. Since µ is supposed to be a
substring of a substitution of xz−1 = x in the required instance of p, the string
←
µ must occur in the string t[q + dβ2 e + |sz|..q + 2β + |sz|] as a substring of a
substitution of xz =

←
x (of course, if there exists such instance of p). Since the

minimal period of
←
µ is greater than β

4 , any two occurrence of
←
µ cannot overlap

on |µ| − β
4 ≥

β
4 letters. Therefore, there are at most 2β/β4 = 8 occurrence of

←
µ in t[q + dβ2 e+ |sz|..q + 2β + |sz|]. We find all these occurrences of

←
µ using a

slightly modified algorithm from the proof of Lemma 6 putting λ = |sz|; it takes

O(r + r|µ|
logn ) time plus O( logn

log logn ) time, if log
16 log logn ≤ |v| ≤ log n. Each found

occurrence of
←
µ specifies exactly one possible instance of p with substitutions of

length β and the starting position of this instance can be easily calculated. To
test whether the substitutions of the variables x and

←
x in this instance respect

each other, we utilize the lcp structure.
Finally, suppose that the minimal period of µ is less than or equal to β

4 .

Since β
4 ≤

|µ|
2 , by Lemma 4, we can find in O(1) time a run t[i′′..j′′] containing

µ and having the same minimal period as µ. Denote µ1 = t[i′′ − 1..s(ydβ8 e) +

|s1s2 · · · sz−1| + (z − 2)β + ydβ2 e] and µ2 = t[s(ydβ8 e) + |s1s2 · · · sz−1| + (z −
2)β..j′′ + 1]. Note that µ1 (resp., µ2) is the minimal extension of µ to the left
(resp., right) that “breaks” the minimal period of µ. One can show that both µ1

and µ2 are not periodic. Since the minimal period of the substitution of x in the
instance of p that we are searching for must be greater than β

4 , this substitution
must contain either µ1 or µ2. So, to find this instance, it suffices to execute the
algorithm similar to that described above putting µ = µ1 and µ = µ2. ut

To Section 4

Three and more runs. Here in appendix we also consider the case when p contains
both x and

←
x. As above, this case turned out to be quite difficult and we need

additional machinery for this. The following result is Lemma 14 from [18].
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Lemma 18. For any primitive string w, there exists at most one pair of palin-
dromes u and v such that v 6= ε and w = uv.

Lemma 19. Suppose that two strings w and
←
w of length ≥3d both lie in a run

with the minimal period d. Then, there exists a unique pair of palindromes u, v
such that |uv| = d, v 6= ε, and

←
w is a prefix of the infinite strings (vu)∞.

Proof. Since
←
w[1..d] and w[1..d] are substrings of the same run with period d,

we have
←
w[1..d] = vu and w[1..d] = uv for some strings u and v such that v 6= ε,

i.e., vu =←−uv =
←
v
←
u. Hence, u and v are palindromes. By Lemma 18, this pair of

palindromes is unique. ut

Lemma 20. Let t[i′..j′] be a run with period d. If, for h ∈ [i′+d..j′+1],
t[h−d..h−1] = uv for some palindromes u and v such that v 6= ε, then, for
any h′ ∈ [i′+d..j′+1], we have t[h′−d..h′−1] = u′v′ for palindromes u′ and v′

such that |u′| = (|u| − 2(h′ − h)) mod d.

Proof. Let h′ = h + 1 (the case h′ = h − 1 is analogous). It suffices to prove
that t[h′−d..h′−1] = u′v′ for palindromes u′ and v′ such that |u′| = (|u| −
2) mod d. Since t[h′−d..h′−1] is a suffix of uv · u[1] (or v · v[1] if |u| = 0), we
have t[h′−d..h′−1] = u′v′, where u′ = u, v′ = v, if d = 1, and u′, v′ are defined
as follows, if d > 1:

u = u[1]u′u[1] if |u| > 1, u′ = v if |u| = 1, v = v[1]u′v[1] if |u| = 0,
v′ = u[1]vu[1] if |u| > 1, v′ = u if |u| = 1, v′ = v[1]v[1] if |u| = 0. ut

Lemma 21. Assuming O(n) time preprocessing, one can find for any substring
t[i..j] in O(1) time a pair of palindromes u, v such that t[i..j] = uv and v 6= ε or
decide that there is no such pair.

Proof. In Lemma C4 from [11], if there exist palindromes u and v such that
t[i..j] = uv, then there exist palindromes u′ and v′ such that t[i..j] = u′v′ and
either u′ is the longest palindromic prefix of t[i..j] or v′ is the longest palindromic
suffix of t[i..j]. To test in O(1) time whether a given substring is a palindrome,
we can use the data preprocessed by Manacher’s algorithm [20]; so, it suffices to
describe a data structure that allows to find the longest palindromic prefix/suffix
of any substring in O(1) time. Without loss of generality, we consider the case of
palindromic suffixes.

Our main tool is the data structure called eertree, which was introduced
in [22]. The eertree of t can be built in O(n) time by Proposition 11 in the
paper of Rubinchik and Shur. The main body of eertree of t consists of nodes;
any node a represents a palindrome pal[a] that is a substring of t and, con-
versely, any palindrome that is a substring of t is represented by some node.
Denote by link[a] the node representing the longest proper palindromic suffix of
pal[a] (if any). In Proposition 9 in the paper of Rubinchik and Shur, for each
node a, there was defined a series link seriesLink[a] such that seriesLink[a] is
either a node a′ representing the longest palindromic suffix of pal[a] such that
| pal[a]| − | pal[link[a]]| 6= | pal[a′]| − | pal[link[a′]]| or the node representing the
empty palindrome if there is no such a′.
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In [22] it was shown that the tree that is induced by the series links with the
root in the node representing the empty palindrome has height at most O(log n).
We build on this tree the weighted ancestor data structure from Lemma 11 of [12]
that allows, for any given node a and number γ ≥ 0, to find the farthest ancestor
a′ of a such that | pal[a′]| ≥ γ; moreover, since the height of our tree is O(log n),
we can answer the queries in O(1) time. Finally, as it was proved in [22], during
the construction of eertree, we can create an array psuf[1..n] such that, for any
j ∈ [1..n], psuf[j] is the node of eertree representing the longest palindromic suffix
of t[1..j].

Now, to find the longest palindromic suffix of a given substring t[i..j], we
compute the farthest ancestor a of psuf[j] such that | pal[a]| ≥ j − i + 1; then,
by the definition of the series links, the longest palindromic suffix of t[i..j]
is either pal[seriesLink[a]] or the palindromic suffix of pal[a] with the length
| pal[a]| − c(| pal[a]| − | pal[link[a]]|), where c is the minimal integer such that
| pal[a]| − c(| pal[a]| − | pal[link[a]]|) ≤ j − i+ 1. ut

Now we can prove Lemma 10 including the case when the pattern p contains
both x and

←
x.

Proof (Lemma 10). We can find a run t[i′..j′] with period d containing v =
t[h1..h2] in O(1) time using Lemma 4. Let t[i..j] = s1w1s2w2 · · · sr−1wr−1sr be an
instance of p satisfying the conditions in the statement of the lemma. Let us find all
possible runs with period d that can contain wz. Denote by h the starting position
of sz. Since |w1| ≥ 3

2 |v| ≥ 3d, Lemma 9 implies that h = j′ − |pred(sz)|+ 1 or
h ∈ (j′+1−d..j′+1] or h ∈ (j′−|sz|−d..j′−|sz|]. Suppose that h ∈ (j′+1−d..j′+1]
(resp., h ∈ (j′−|sz|−d..j′−|sz|], h = j′−|sufd(sz)|+1). Then, any run containing
wz certainly contains the substring t[j′+|sz|+1..j′+|sz|+2d] (resp., t[j′..j′+2d−1],
t[h+ |sz|..h+ |sz|+ 2d]). We find a run with period d containing this substring
in O(1) time by Lemma 4. Thus, we have three possible locations for a run with
period d containing wz (note that some of the found runs can coincide). We process
each separately; let t[i′′..j′′] be one of these three runs. So, suppose that t[i′..j′]
and t[i′′..j′′] are runs with period d containing the substrings w1s2w2 · · · sz−1wz−1
and wzsz+1wz+1 · · · sz′−1wz′−1, respectively.

Denote by h′ the starting position of sz′ . Note that t[h..h′−1] =
szwz · · · sz′−1wz′−1. Hence, if the number h′ − h is known, we can calculate

|w1| =
h′−h−|szsz+1···sz′−1|

z′−z , apply Lemma 7 for β = |w1|, and thus find all

corresponding instances of p in O(r + r|v|
logn ) time plus O( logn

log logn ) time, if
log

16 log logn≤|v|≤ log n. So, our aim is to find a constant number of possible values

for h′ − h and process each of them with the help of Lemma 7.

Suppose that xz−1 = xz′−1. By Lemma 2, since t[h−d..h−1] = t[h′−d..h′−1],
we have h − ` ≡ h′ − `′ (mod d), where ` and `′ are the starting positions of
Lyndon roots of, resp., t[i′..j′] and t[i′′..j′′]; ` and `′ can be found in O(1) time
by Lemma 17. So, we obtain h′ − h ≡ `′ − ` (mod d). By Lemma 9, h either
equals j′ − |pred(sz)|+ 1 or lies in one of the segments S1 = (j′+1−d..j′+1] or
S2 = (j′−|sz|−d..j′−|sz|] of length d; similarly, h′ either equals j′′−|pred(sz′)|+1
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Fig. 4: The case h′ − h = j′′ − j′ − θ in the proof of Lemma 10.

or lies in S′1 = (j′′+1−d..j′′+1] or S′2 = (j′′−|sz′ |−d..j′′−|sz′ |]. For each h ∈ S1,
there is exactly one h′ ∈ S′1 such that h′−h ≡ `′− ` (mod d); moreover, one can
easily prove that in this case h′−h is equal to either j′′− j′− θ or j′′− j′− θ+d,
where θ = ((j′′ − `′) − (j′ − `)) mod d (see Fig. 4). For each of these values of

h′ − h, we apply Lemma 7 putting β =
h′−h−|szsz+1···sz′−1|

z′−z . Other combinations
(h ∈ S1 and h′ ∈ S′2, h ∈ S2 and h′ ∈ S′1, h ∈ S2 and h′ ∈ S′2) are analogous; the
cases when either h = j′ − |pred(sz)| + 1 or h′ = j′′ − |pred(sz′)| + 1 are even
simpler. It remains to discuss the case xz−1 6= xz′−1.

Assume that xz−1 6= xz′−1. Suppose that xz = xz′ . Let us find all runs with
period d that can contain the substitution wz′ . Using the run t[i′′..j′′], one can find
three possible choices for such run in the same way as we found three choices for
t[i′′..j′′] using t[i′..j′]; we should process each of these three choices. Let us fix one
such run t[i′′′..j′′′]. So, suppose that t[i′′′..j′′′] contains wz′ . Denote h0 = h+|sz|−1
and h′0 = h′+|sz′ |−1. Since t[h0+1..h′0] = wzsz+1wz+1 · · ·wz′−1sz′ , if the number
h′0 − h0 is known, we can calculate |w1| = (h′0 − h0 − |sz+1sz+2 · · · sz′ |)/(z′ − z)
and apply Lemma 7 putting β = |w1|. Let `′′ be the starting position of a Lyndon
root of t[i′′′..j′′′]; `′′ can be found in O(1) time by Lemma 17. Now we can find
a constant number of possible values for the number h′0 − h0 doing the same
case analysis on the positions h0 and h′0 as we did on h and h′ but using the
runs t[i′′..j′′] and t[i′′′..j′′′] instead of t[i′..j′] and t[i′′..j′′], the positions `′ and
`′′ instead of ` and `′, and a reversed version of Lemma 9.

Finally, suppose that xz−1 6= xz′−1 and xz 6= xz′ . Without loss of generality,
assume that xz−1 = x. Then, we have either xz−1szxz = xsz

←
x and xz′−1sz′xz′ =

←
xsz′x or xz−1szxz = xszx and xz′−1sz′xz′ =

←
xsz′

←
x.

Suppose that xz−1szxz = xsz
←
x and xz′−1sz′xz′ =

←
xsz′x. Since

t[h′−d..h′−1] =
←−−−−−−−−−−−−−−−−−−
t[h′+|sz′ |..h′+|sz′ |+d−1], it follows from Lemma 2 that h′ −

1− `′ ≡ `′′0 − (h′ + |sz′ |) (mod d), where `′′0 is the ending position of a reversed
Lyndon root of t[i′′′..j′′′]; `′′0 can be computed in O(1) time by Lemma 17. Thus,

we obtain 2h′ ≡ `′+ `′′0 + 1−|sz′ | (mod d), i.e., either h′ ≡ `′+`′′0 +1−|sz′ |
2 (mod d)

or h′ ≡ `′+`′′0 +1−|sz′ |+d
2 (mod d). It is easy to see that any segment of length d

contains at most two positions h′ satisfying the latter equalities; moreover, one can
find these positions in O(1) time. So, since, by Lemma 9, h′ = j′−|pred(sz)|+1 or
h′ lies in one of two segments of length d, there are at most five values for h′ such
that 2h′ ≡ `′+ `′′0 +1−|sz′ | (mod d); we can find them all in O(1) time. Symmet-
rically, we find at most five possible values for h but using the runs t[i′..j′] and
t[i′′..j′′] instead of t[i′′..j′′] and t[i′′′..j′′′] and the position `′0 instead of `′′0 . Finally,
for each found value h′− h, we calculate β = (h′− h− |szsz+1 · · · sz′−1|)/(z′− z)
and apply Lemma 7.



24 D. Kosolobov, F. Manea, and D. Nowotka

It remains to process the case when xz−1szxz = xszx and xz′−1sz′xz′ =
←
xsz′

←
x. Since in this case w and

←
w both are substrings of t[i′′..j′′] as substitutions

of xz = x and xz′−1 =
←
x, by Lemma 19, there exist palindromes u and v

such that |uv| = d, v 6= ε, and
←
w is a prefix of the infinite string (vu)∞. In

O(r) time we find a number z′′ ∈ (z..z′) such that xz′′−1sz′′xz′′ = xsz′′
←
x.

Since wsz′′
←
w is a substring of t[i′′..j′′], we have sz′′ = u(vu)k

′
for some k′ ≥ 0.

Therefore, we can compute the length of u: |u| = |sz′′ | mod d. Given a segment
[f1..f2] ⊂ [i′+d..j′+1] of length d, it follows from Lemmas 18 and 20 that there
exist at most two positions f ∈ [f1..f2] such that t[f−d..f−1] = v′u′ for some
palindromes u′ and v′ such that |u′| = |u|. We can find these positions in O(1)
time using the equality from Lemma 20 provided, for some f ′ ∈ [f1..f2], we
know palindromes u′′ and v′′ such that t[f ′−d..f ′−1] = u′′v′′. The palindromes
u′′ and v′′ can be computed for arbitrary f ′ in O(1) time by Lemma 21. Since,
by Lemma 9, h either equals j′ − |pred(sz)| + 1 or lies in one of the segments
(j′+1−d..j′+1] or (j′−|sz|−d..j′−|sz|] of length d, there are at most five possible
values for h and each of them can be found in O(1) time. In the same way we find
at most five possible values for h′. Finally, for each obtained possible value h′−h,
we calculate β = (h′ − h− |szsz+1 · · · sz′−1|)/(z′ − z) and apply Lemma 7. ut

In-a-run instances of p. The special case p = s1
←
xs2xs3 is discussed below.

To prove Lemma 15, we need the following auxiliary result.

Lemma 22. Suppose that x1 = · · · = xr−1. Given a run t[i′..j′] with period d,
a segment [b1..b2] ⊂ [i′..j′] of length d, and an integer η ≥ d, we can compute
in O(r + rd

logn ) time a bit array D′[b1..b2] such that, for h ∈ [b1..b2], D′[h] =

1 iff the string t[h−|s1s2 · · · sr−1|−(r−1)η..h+|sr|−1] is an instance of p and
h− |s2s3 · · · sr−1| − (r − 1)η ≥ i′.

Proof. We obtain a bit array D′[b1..b2] performing in O(r+ rd
logn ) time

the bitwise “and” of the subarrays {Dz[b1−γz..b2−γz]}rz=1, where γz =
(r−z)η−|szsz+1 · · · sr−1|. In O( d

logn ) time we fill with zeros a subarray D′[b1..b]

for the maximal b ∈ [b1..b2] such that b−(r−1)η−|s2s3 · · · sr−1| < i′ (if any).
Since x1= · · ·=xr−1 and η ≥ d, it follows from Lemma 2 that, for h ∈ [b1..b2]
such that D′[h] = 1, t[h−|s1s2 · · · sr−1|−(r−1)η..h+|sr|−1] is an instance of p
iff η ≡ −|sz| (mod d) for all z ∈ (1..r) (i.e., if substitutions of x are aligned
properly). So, if η 6≡ −|sz| (mod d) for some z ∈ (1..r), then we fill D′[b1..b2]
with zeros. ut

Proof (Lemma 15). Choose h ∈ [b1..b2]. Denote ih = h − |s1s2 · · · sr−1| − (r −
1)δ, jh = h + |sr| − 1, and ch = b ih−i

′

(r−1)dc. By Lemma 13, if a string t[i..j] =

s1w1s2w2 · · · sr−1wr−1sr satisfies (3), i′ ≤ i ≤ j − |sr| + 1 = h, and |w1| ≡ δ
(mod d), then t[ih..jh] is an instance of p and t[i..j] = t[ih−(r−1)cd..jh] for
some c ∈ [0..ch]; conversely, if t[ih..jh] is an instance of p, then all substrings
t[ih−(r−1)cd..jh], for c ∈ [0..ch], are instances of p. By the definition of ch,
there is a threshold h′ ∈ [b1..b2] such that, for any h1, h2 ∈ [b1..b2], ch1 = ch2 if
h1, h2 ∈ [b1..h

′] or h1, h2 ∈ (h′..b2], and |ch1−ch2 | = 1, otherwise; h′ can be found
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in O(1) time by simple calculations. Put d′ = ch′ and d′′ = ch′+1. Suppose that
x1= · · ·=xr−1. Then, applying Lemma 22 for η = δ, we compute the required bit
array E[b1..b2]. Now it remains to find all strings t[i..j] satisfying (3) and such
that i < i′ and j − |sr|+ 1 ∈ [b1..b2].

Let t[i..j] = s1w1 · · · sr−1wr−1sr satisfy (3), j − |sr| + 1 ∈ [b1..b2], |w1| ≡ δ
(mod d), and i < i′. Denote h = j− |sr|+ 1. By a symmetric version of Lemma 8,
we have either i+|s1| ∈ [i′..i′+d) or i+|s1| = i′+|sufd(s1)|. Suppose that i+|s1| ∈
[i′..i′+d). By Lemma 13, we have i+ |s1| = h− |s2s3 · · · sr−1| − (r− 1)(δ + ahd),
where ah is the maximal integer such that h−|s2s3 · · · sr−1|−(r−1)(δ+ahd) ≥ i′.
The definition of ah implies that there is h′′ ∈ [b1..b2] such that, for any h1, h2 ∈
[b1..b2], ah1 = ah2 if h1, h2 ∈ [b1..h

′′] or h1, h2 ∈ (h′′..b2], and |ah1 − ah2 | = 1,
otherwise; h′′ can be simply found in O(1) time. Put a′ = ah′′ and a′′ = ah′′+1.
Suppose that x1= · · ·=xr−1. Then, we compute two bit arrays F1[b1..b2] and
F2[b1..b2] applying Lemma 22 for η = δ+a′d and η = δ+a′′d, respectively. Finally,
we concatenate the arrays F1[b1..h

′′] and F2[h′′+1..b2] to obtain F [b1..b2].

Suppose that i + |s1| = i′ + |sufd(s1)|. Since |t[i+|s1|..h−1]| =
|w1s2w2 · · · sr−1wr−1|, we have h − (i′ + |sufd(s1)|) ≡ |s2s3 · · · sr−1| + (r − 1)δ
(mod d). Since b2 − b1 + 1 = d, there is exactly one position h ∈ [b1..b2] sat-
isfying the latter equality; h can be found in O(1) time. We check whether
t[i′ + |sufd(s1)| − |s1|..h+ |sr| − 1] is an instance of p in O(r) time using the lcp
structure and the arrays {Dz}rz=1; thus, we may find an additional instance of p
that is not encoded in E and F .

While in the case x1 = · · · = xr−1 it was sufficient to rely on the periodicity of
t[i′..j′] to test whether corresponding substitutions are equal (as in Lemma 22), in
the case when p contains both x and

←
x it is not clear how to test for all h ∈ [b1..b2]

simultaneously whether corresponding substitutions of x and
←
x respect each

other. However, it turns out that there are at most two positions h ∈ [b1..b2] for
which there might exist a string t[i..j] satisfying (3) and such that j−|sr|+1 = h.
We find these two positions in O(1) time and process each of them separately in
O(r) time.

Let t[i..j] be a string satisfying (3) and such that j−|sr|+1 ∈ [b1..b2]. Denote
by w the substitution of x in t[i..j]. By Lemma 19, there exist palindromes u
and v such that v 6= ε and

←
w[1..d] = vu. Let us find the lengths of u and v.

Choose a number z′ ∈ (1..r) such that xz′−1sz′xz′ =
←
xsz′x (it exists because

xr−1 = x). Since p 6= s1xs2
←
xs3, p 6= s1

←
xs2xs3, and r ≥ 3, there is z′′ ∈ (1..r)

such that xz′′−1sz′′xz′′ is equal to either xsz′′
←
x or one of the strings xsz′′x

or
←
xsz′′

←
x. Suppose that xz′′−1sz′′xz′′ = xsz′′

←
x. Since the strings vu and uv

are primitive, it follows from Lemma 2 that sz′′ = u(vu)k
′

for an integer k′.
Therefore, we can compute the length of u: |u| = |sz′′ | mod d. Now suppose that
xz′′−1sz′′xz′′ = xsz′′x (resp. xz′′−1sz′′xz′′ =

←
xsz′′

←
x). It follows from Lemma 2

that the distance between any two occurrence of w (resp.,
←
w) in t[i′..j′] is a

multiple of d; thus, we have |w| ≡ −|sz′′ | (mod d). Since
←
wsz′w is a substring of

t[i′..j′], by Lemma 2, we have
←
wsz′w = (vu)k

′
v for an integer k′. Therefore, we

can compute the length of v: |v| = (|sz′ |+ 2|w|) mod d = (|sz′ | − 2|sz′′ |) mod d
assuming |v| = d if |sz′ | − 2|sz′′ | ≡ 0 (mod d).
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Using Lemma 21, we find in O(1) time palindromes u′′ and v′′ such that
t[b2−d+1..b2] = u′′v′′ (they exist by Lemma 20). Since b2 − b1 + 1 = d, it follows
from Lemmas 18 and 20 that there are at most two positions h ∈ [b1..b2] such
that t[h−d..h−1] = u′v′ for some palindromes u′ and v′ satisfying |u′| = |u| and
|v′| = |v|; these positions h can be found using the equality from Lemma 20 and
the lengths |u′′| and |v′′|. Fix one such position h ∈ [b1..b2].

By Lemma 13, there exists an instance t[i..j] = s1w1s2w2 · · ·wr−1sr−1sr of p
satisfying (3) and such that i ≥ i′, |w1| ≡ δ (mod d), and j − |sr|+ 1 = h iff the
string t[ih..jh] is an instance of p (recall that ih = h− |s1s2 · · · sr−1| − (r − 1)δ,

jh = h+ |sr| − 1, and ch = b ih−i
′

(r−1)dc); moreover, in this case t[i..j] = t[ih − (r −
1)(δ + cd)..jh] for some c ∈ [0..ch]. So, we test whether t[ih..jh] is an instance of

p in O(r) time using the arrays {Dz}rz=1 and the lcp structure of the string t
←
t .

So, if t[ih..jh] is an instance of p, then we put E[h] = 1; if h is the smallest of
the two positions such that t[h−d..h−1] = u′v′ for some palindromes u′ and v′

such that |u′| = |u| and |v′| = |v|, then we put h′ = h and d′ = ch; otherwise, we
put d′′ = ch. (So, E[b1..b2] contains at most two non-zero positions).

To find all instances t[i..j] of p such that j − |sr| + 1 = h and i < i′,
we use a case analysis relying on a symmetric version of Lemma 8 similar to
the analysis described above for the case x1 = · · · = xr−1. By Lemma 8, we
have either i + |s1| = i′ + |sufd(s1)| or i + |s1| ∈ [i′..i′+d). First, suppose that
i+ |s1| ∈ [i′..i′+d). Since we must have h− (i+ |s1|) ≡ |s2s3 · · · sr−1|+ (r − 1)δ
(mod d), we find in O(1) time at most one possible position h′ ∈ [i′..i′+d) such
that h − h′ ≡ |s2s3 · · · sr−1|+ (r − 1)δ (mod d) (we suspect that h′ = i + |s1|)
and test whether t[h′− |s1|..h+ |sr| − 1] is an instance of p in O(r) time with the

aid of the arrays {Dz}rz=1 and the lcp structure of t
←
t ; if this string is an instance,

then we put F [h] = 1, a′ = (h− h′ − |s2s3 · · · sr−1| − (r − 1)δ)/d, h′′ = b2. (So,
F trivially encodes at most one instance of p) Finally, we test in O(r) time
whether t[i′ + |sufd(s1)| − |s1|..h+ |sr| − 1] is an instance of p; thus, we can find
an additional instance of p that is not encoded in E or F . ut

In-a-run instances of p: the special case p = s1
←
xs2xs3. Consider the special case

p = s1
←
xs2xs3. Let us count all instances t[i..j] = s1

←
ws2ws3 of p satisfying (3)

and such that i + |s1
←
w| ∈ [b1..b2]. Suppose that t[i..j] = s1

←
ws2ws3 is such

instance. By Lemma 19, there exist palindromes u and v such that v 6= ε and
w[1..d] = uv. It follows from Lemma 2 that s2 = (vu)k

′
v for some integer k′ ≥ 0.

Hence, we can calculate the length of v: |v| = |s2| mod d assuming |v| = d if
|s2| mod d = 0. Using Lemma 21, we find in O(1) time palindromes u′′ and v′′

such that t[b2−d+1..b2] = u′′v′′ (they exist by Lemma 20). Since b2 − b1 + 1 = d,
it follows from Lemmas 18 and 20 that there are at most two positions h ∈ [b1..b2]
such that t[h−d..h−1] = v′u′ for some palindromes u′ and v′ satisfying |u′| = |u|
and |v′| = |v|; these positions h can be easily found using the equality from
Lemma 20 and the lengths |u′′| and |v′′|.

So, fix one such position h ∈ [b1..b2]. The position h is a suspected starting
position of s2 in an instance of p. By the procedure similar to that used in the proof
of Lemma 16, we compute in O(1+ d

logn ) time a bit array D′[h−|s1|−d..h−|s1|]
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such that D′[h′] = 1 iff there is an instance s1
←
ws2ws3 of p starting at position

h′ and such that h′ + |s1
←
w| = h. It follows from Lemma 13 that any string

t[i..i + |s1s2s3| + 2y] such that y ≥ d, i′ ≤ i ≤ i + |s1s2s3| + 2y ≤ j′, and
i+ |s1|+y = h is an instance of p iff the string t[i+ bydcd..j−b

y
dcd] is an instance

of p, i.e., iff D′[i+ bydcd] = 1. So, once the array D′ is computed, one can easily
count the number of all instance t[i..i + |s1s2s3| + 2y] of p such that y ≥ d,
i′ ≤ i ≤ i+ |s1s2s3|+ 2y ≤ j′, i+ |s1|+ y = h. It remains to count the number
of instance t[i..i+ |s1s2s3|+ 2y] of p such that y ≥ d, i+ |s1|+ y = h, and either
i < i′ ≤ i+ |s1| or j − |sr| ≤ j′ < j. We can do this with the same case analysis
as for the case p 6= s1

←
xs2xs3.

In-two-runs instances of p. Like in the case of one run, our algorithm for two
runs processes each run t[i′..j′] with period d (only once) and finds all instances
of p whose substitutions have length ≥3d and lie in exactly two runs: t[i′..j′] and
another run with period d.

Choose z ∈ [1..r). Let t[i..j] = s1w1s2w2 · · ·wr−1sr be an instance of p
such that |w1|= · · ·=|wr−1| ≥ 3d, t[i+ |s1|..h− 1] is a substring of t[i′..j′], and
t[h+ |sz+1|..j − |sr|] is a substring of another run with period d, where h = i+
|s1w1 · · · szwz|. We call z a separator in t[i..j]. Obviously, the string wzsz+1wz+1

does not have period d. Hence, by Lemma 9, we have h ∈ (j′+1−d..j′+1]
or h ∈ (j′−|sz+1|−d..j′−|sz+1|] or h = j′ − |pred(sz+1)| + 1. Suppose that
h ∈ (j′+1−d..j′+1] (the other cases are similar). Let b1 = j′+2−d and b2 = j′+1.

Since |wz+1| ≥ 3d, the string t[h+|sz+1|..h+|sz+1wz+1|−1] = wz+1 contains
the substring t[b2 + |sz+1|..b2 + |sz+1| + 2d − 1]. So, using Lemma 4 for the
latter substring, we find in O(1) time a run t[i′′..j′′] with period d containing
wz+1. Clearly, the strings t[i..h−1] and t[h+|sz+1|..j] are instances of the pat-
terns s1x1 · · · szxz and xz+1sz+2 · · ·xr−1sr, respectively, and t[i+|s1|..h−1] and
t[h+|sz+1|..j−|sr|] are substrings of the runs t[i′..j′] and t[i′′..j′′], respectively.
Hence, if either there is z′ ∈ (1..r) \ {z+1} such that xz′−1 = xz′ or there are
z′, z′′ ∈ (1..r) \ {z+1} such that xz′−1sz′xz′ =

←
xsz′x and xz′′−1sz′′xz′′ = xsz′′

←
x,

then the number |w1| mod d is equal to one of the values described in Lemma 14;
let δ′ ∈ [0..d) be one of these values (we process each such δ′). Otherwise (if we
could not find such z′ and z′′), we have r ≤ 5 and we can compute a similar
value δ′ as follows. If p 6= s1xs2

←
xs3 and p 6= s1

←
xs2xs3, then there are z′ ∈ (1..z]

and z′′ ∈ (z+1..r) such that xz′ = xz′′ . Denote by ` and `′ the starting positions
of Lyndon roots of t[i′..j′] and t[i′′..j′′], respectively; ` and `′ can be computed in
O(1) time by Lemma 17. It follows from Lemma 2 that i+ |s1w1 · · · sz′wz′ | − ` ≡
i + |s1w1 · · · sz′′wz′′ | − `′ (mod d). Therefore, |sz′+1wz′+1 · · · sz′′wz′′ | ≡ `′ − `
(mod d) and hence (z′′ − z′)|w1| ≡ `′ − ` − |sz′+1sz′+2 · · · sz′′ | (mod d). This

equation has at most z′′ − z′ solutions: |w1| ≡
cd+`′−`−|sz′+1sz′+2···sz′′ |

z′′−z′ (mod d)
for c ∈ [0..z′′−z′); let δ′ ∈ [0..d) be one of these solutions (we process all such δ′;
since z′′ − z′ ≤ r− 3 ≤ 2, there are at most two such δ′). Now let us consider the
cases p = s1xs2

←
xs3 and p = s1

←
xs2xs3.

Suppose that p = s1
←
xs2xs3 (the case p = s1xs2

←
xs3 is symmetrical). Consider

an instance t[i..j] = s1
←
ws2ws3 of p whose substitutions of x and

←
x have length

≥3d and lie in distinct runs t[i′..j′] and t[i′′..j′′] with period d. As above, by
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Lemma 9, we have h ∈ (j′+1−d..j′+1] or h ∈ (j′−|sz+1|−d..j′−|sz+1|] or h =
j′ − |pred(sz+1)| + 1, where h = i + |s1

←
w|. Suppose that h ∈ (j′+1−d..j′+1]

(other cases are analogous) and denote b1 = j′ + 2− d and b2 = j′ + 1.
Denote by ` and `′0 the starting position of a Lyndon root of t[i′..j′] and the

ending position of a reversed Lyndon root of t[i′′..j′′], respectively; ` and `′0 can
be found in O(1) time by Lemma 17. In order to synchronize parts of p that are
contained in t[i′..j′] and t[i′′..j′′], we check in O(1) time using the lcp structure

whether
←−−−−−−−
t[`..`+d−1] = t[`′0−d+1..`′0]; if not, then there cannot be any instances

of p such as t[i..j]. It follows from Lemma 2 that h − ` ≡ `′0 − (h + |s2| − 1)
(mod d). Hence, we obtain 2h ≡ `+ `′0 − |s2|+ 1 (mod d). Since b2 − b1 + 1 = d,
we can find in O(1) time at most two positions h in [b1..b2] satisfying the latter
equality. Fix one such position h0 ∈ [b1..b2]; h0 is a suspected starting position
of s2 in an instance of p.

Applying Lemma 16 with h1 = h0 − d, h2 = h0 − 1, q = h0 + |s2| (see Fig. 2),
we compute a bit array occ[h1 − d − |s1|..h1 − |s1|] such that, for any h′ ∈
[h1−d−|s1|..h1−|s1|], we have occ[h′] = 1 iff t[h′..n] has a prefix s1

←
ws2ws3 such

that h′+ |s1
←
w| = h0. Since

←−−−−−−−
t[`..`+d−1] = t[`′0−d+1..`′0], by the definition of h0, it

follows that any string t[i..j] such that i′ ≤ i, j ≤ j′′, and i+ |s1|+`w = h0, where
`w = (j−i+1−|s1s2s3|)/2, is an instance of p iff occ[h0−d−(`w mod d)−|s1|] = 1.
So, in this way we found all instances of p that correspond to h0 and do not cross
the boundaries i′ and j′′.

Now suppose that t[i..j] = s1
←
ws2ws3 is an instance of p such that i < i′ ≤

i + |s1| and i + |s1
←
w| = h0 (the case j > j′′ is symmetrical). By Lemma 8, we

have either i+ |s1| ∈ [i′..i′+d) or i+ |s1| = i′+ |sufd(s1)|. First, we check whether
t[i′+|sufd(s1)|−|s1|..h0+|s2|+(h0−i′−|sufd(s1)|)+|s3|−1] is an instance of p in
O(1) time using the lcp structure and the arrays D1, D2, D3. Secondly, we find all
instances t[i..j] = s1

←
ws2ws3 of p satisfying i+ |s1

←
w| = h0 and i+ |s1| ∈ [i′..i′+d)

using Lemma 16 with h1 = i′ + d, h2 = i′ + 2d− 1, q = h0 + |s2|+ (h0 − i′ − 2d)
(see Fig. 2).

Denote δ = 3d + δ′. It follows from Lemma 11 that any separator z ∈ Z
(resp., z ∈ Z ′, z ∈ Z ′′) satisfies (2) for Z0 = Z (resp., Z0 = Z ′, Z0 = Z ′′). So, we
find O(1) “suspect” separators, by Lemma 12. We apply the following lemma
to each of them and essentially obtain two bit arrays encoding compactly the
occurrences of p.

Lemma 23. Given z ∈ [1..r), two runs t[i′..j′] and t[i′′..j′′] with period d, a
number δ ≥ d, and a segment [b1..b2] ⊂ [i′..j′+1] of length d, we can compute
in O(r + rd

logn ) time the numbers d′, d′′, d′′′, h′, h′0, h
′′, h′′0 , a

′, a′′, a′′′ and the bit

arrays E[b1..b2], F [b1..b2] such that:

1. for any h ∈ [b1..h
′] (resp., h ∈ (h′..h′0], h ∈ (h′0..b2]), we have E[h] = 1 iff the

strings t[h−|s1s2 · · · sz|−z(δ+cd)..h+|sz+1sz+2 · · · sr|+(r−1−z)(δ+cd)−1],
for all c ∈ [0..d′] (resp., c ∈ [0..d′′], c ∈ [0..d′′′]), are instances of p and i′ ≤
h−|s1s2 · · · sz|−z(δ+cd) ≤ h+ |sz+1sz+2 · · · sr|+(r−1−z)(δ+cd)−1 ≤ j′′;

2. for any h ∈ [b1..h
′′] (resp., h ∈ (h′′..h′′0 ], h ∈ (h′′0 ..b2]), we have F [h] = 1 iff the

string t[h−|s1s2 · · · sz|−z(δ+ad)..h+|sz+1sz+2 · · · sr|+(r−1−z)(δ+ad)−1],
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where a = a′ (resp., a = a′′, a = a′′′), is an instance of p and i′ ≤ h −
|s2s3 · · · sz|−z(δ+ad) ≤ h+ |sz+1sz+2 · · · sr−1|+(r−1−z)(δ+ad)−1 ≤ j′′.

In addition, we find at most two instances t[i0..j0] = s1w1 · · ·wr−1sr of p such
that |w1| = · · · = |wr−1| ≥ 3d, |w1| ≡ δ (mod d), i′ ≤ i0 + |s1| ≤ j0 − |sr| ≤ j′′,
i0 + |s1w1 · · · szwz| ∈ [b1..b2], and it is guaranteed that any instance t[i..j] =
s1w1 · · ·wr−1sr of p such that i′ ≤ i+ |s1| ≤ j− |sr| ≤ j′′, |w1| = · · · = |wr−1| ≥
3d, |w1| ≡ δ (mod d), and i+ |s1w1 · · · szwz| ∈ [b1..b2] either is encoded in the
arrays E,F or is represented by one of the additional instances.

Proof. Denote p1 = s1x1 · · · szxz and p2 = xz+1sz+2 · · ·xr−1sr. We apply
Lemma 15 putting p := p1 to compute the numbers d′1, d

′′
1 , h
′
1, h
′′
1 , a
′
1, a
′′
1 , the

bit arrays E1[b1..b2], F1[b1..b2], and, if needed, one additional instance t[i10..j
1
0 ] of

p1 that altogether represent all instances t[i..j] = s1w1 · · · szwz of p1 such that
|w1| = · · · = |wz| ≥ 3d, |w1| ≡ δ (mod d), i′ ≤ i+|s1| ≤ j ≤ j′, and j+1 ∈ [b1..b2].
Similarly, putting p := p2, we apply a symmetrical version of Lemma 15
to obtain numbers d′2, d

′′
2 , h
′
2, h
′′
2 , a
′
2, a
′′
2 , bit arrays E2[b1+|sz+1|..b2+|sz+1|],

F2[b1+|sz+1|..b2+|sz+1|], and, probably, one additional instance t[i20..j
2
0 ] of p2

that together represent all instances t[i..j] = wz+1sz+2 · · ·wr−1sr of p2 such that
|wz+1| = · · · = |wr−1| ≥ 3d, |wz+1| ≡ δ (mod d), i′′ ≤ i ≤ j − |sr| ≤ j′′, and
i ∈ [b1+|sz+1|..b2+|sz+1|]. We combine these to get all required instances of p as
follows.

To combine instances of p1 and p2 encoded in the arrays E1[b1..b2] and
E2[b1+|sz+1|..b2+|sz+1|], we perform in O( d

logn ) time the bitwise “and” of these

arrays and the bit array Dz+1[b1..b2] and thus obtain a bit array E[b1..b2]. Further,
we find in O( d

logn ) time one arbitrary position h ∈ [b1..b2] such that E[h] = 1. In

order to “synchronize” instances of p1 and p2, we check in O(1) time using the
lcp structure whether t[h−d..h−1] = t[h+|sz+1|..h+|sz+1|+d−1], if xz = xz+1,

or
←−−−−−−−−
t[h−d..h−1] = t[h+|sz+1|..h+|sz+1|+d−1], if xz 6= xz+1; if not, then we fill

E with zeros. One can show that E satisfies the conditions in the statement
of the lemma provided h′ = min{h′1, h′2}, h′0 = max{h′1, h′2}, d′ = min{d′1, d′2},
d′′′ = min{d′′1 , d′′2}, d′′ = min{d′′1 , d′2} if h′1 ≤ h′2, and d′′ = min{d′1, d′′2} if h′1 > h′2.

We apply a similar analysis for all remaining combinations: E1 and F2, F1

and E2, F1 and F2; but due to the definitions of the arrays F1, F2 and the
numbers a′1, a

′′
1 , a
′
2, a
′′
2 , h
′′
1 , h
′′
2 , we can combine the results into one bit array

F [b1..b2] putting h′′ = min{h′′1 , h′′2}, h′′0 = max{h′′1 , h′′2}, a′ = min{a′1, a′2}, a′′′ =
min{a′′1 , a′′2}, a′′ = min{a′′1 , a′2} if h′′1 ≤ h′′2 , and a′′ = min{a′1, a′′2} if h′′1 > h′′2 .
Finally, we try to “extend” in an obvious way the instance t[i10..j

1
0 ] of p1 (similarly,

t[i20..j
2
0 ] of p2) to a full instance of p in O(r) time using the lcp structure and the

arrays {Dz}rz=1. Thus, we obtain at most two instances of p. ut


	Detecting One-variable Patterns

