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Abstract

The order preserving pattern matching (OPPM ) problem is, given
a pattern string p and a text string t, find all substrings of t which have
the same relative orders as p. In this paper, we consider two variants
of the OPPM problem where a set of text strings is given as a tree or
a DAG. We show that the OPPM problem for a single pattern p of
length m and a text tree T of size N can be solved in O(m+N) time if
the characters of p are drawn from an integer alphabet of polynomial
size. The time complexity becomes O(m logm + N) if the pattern p
is over a general ordered alphabet. We then show that the OPPM
problem for a single pattern and a text DAG is NP-complete.

1 Introduction

The order preserving pattern matching (OPPM ) problem is, given a pat-
tern string p and a text string t, find all substrings of t which have the
same relative orders as p. For instance, let p = (22, 41, 35, 37) and t =
(63, 18, 48, 29, 42, 56, 25, 51). The relative orders of the characters in p is
1, 4, 2, 3. A substring t[2..5] = (18, 48, 29, 42) have the same relative orders
1, 4, 2, 3 as p, and hence the occurrence of this substring is reported. OPPM
captures structural isomorphism of strings, and thus has potential appli-
cations in the analysis of times series such as stock prices, and in melody
matching of musical sequences [10, 7].

Let m and n be the lengths of the pattern string p and the text string
t, respectively. Kim et al. [10] proposed an O(m logm+ n)-time algorithm
for the OPPM problem. Independently, Kubica et al. [11] proposed an
O(sort(p) + n)-time algorithm, where sort(p) denotes the time complexity
to sort the elements in p; sort(p) = O(m logm) for general ordered alphabets
and sort(p) = O(m) for integer alphabets of size mO(1). These algorithms
are based on the Morris-Pratt algorithm [12]. Kubica et al.’s algorithm
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works when the input strings do not contain same characters. Cho et al. [7]
showed how Kubica et al.’s algorithm can be modified when there are same
characters in the input strings, retaining the same efficiency. Other types
of algorithms for the OPPM problem have also been proposed (e.g., see
[10, 7, 6, 9]).

This paper considers two natural extensions to the OPPM problem,
where a set of text strings is given as a tree or a DAG. We show that
the OPPM problem for a single pattern p and a text tree T of size N can be
solved in O(sort(p)+N) time. (and hence O(m logm+N) time for general
ordered alphabets and O(m+N) time for integer alphabets polynomial size).
Our method uses a Morris-Pratt type of (non-deterministic) pattern match-
ing automaton, and generalizes the existing results for the OPPM problem
on a single text string. We then show that the OPPM problem for a single
pattern and a text DAG is NP-complete.

Related work

The exact pattern matching problem on a single pattern string and a tree
was first considered by Dubiner et al. [8]. Their algorithm is based on a
(non-deterministic) Morris-Pratt automaton.

Amir and Navarro [3] considered the parameterized pattern matching
(PPM ) problem on trees. Let σ be the alphabet size. They showed that the
PPM problem on trees can be solved in O(N log(min{σ,m})) time, provided
that the deterministic version of a Morris-Pratt type automaton is available.
However, the size of the deterministic version of such an automaton can be
as large as O(m2). Hence, their algorithm takes O(m2 + N(min{σ,m}))
time in the worst case1.

Recall that the running time per text character of a non-deterministic
Morris-Pratt automaton depends on the number of failure transitions used
per text character. The key analysis of a total linear running time of this
method on a single text string is that this number is amortized constant.
The same amortization argument holds for its OPPM and PPM variants on
a single text string.

The difficulty in using a non-deterministic Morris-Pratt automaton for
a tree text is that if we simply run the automaton on the tree as is, then
the above amortization argument does not hold. It seems that this point
was overlooked even in the exact pattern matching problem on trees (see
the proof of Lemma 2.2 of the work by Dubiner et al. [8]).

Still, we will show that a small trick permits us to bound the number
of failure transitions per character to amortized constant, achieving our
result for the OPPM problem on trees. We here emphasize that the same
trick can be employed in any variant of a non-deterministic Morris-Pratt

1Simon [14] proposed an O(m)-space Morris-Pratt automaton for exact pattern match-
ing, however, it is unclear if this can be extended to PPM or OPPM.
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type automaton. This implies that it is actually possible to solve the exact
pattern matching problem on trees in O(m+N) time using the Morris-Pratt
automaton, and the PPM problem on trees in O((m + N) log(min{σ,m}))
time. Both of these results are optimal; the former is clear, and the latter
matches the lower bound of the PPM problem in the comparison model [3].

Several results for the exact pattern matching problem with a single
pattern string and a labeled graph are known (e.g. [13, 1]). See a survey [2]
for other schemes of pattern matching on graph texts.

Amir and Navarro [3] showed the PPM problem on DAGs is NP-complete.
Coupled with their afore-mentioned results on trees, we can observe that the
PPM and OPPM problems have similar complexities on trees and DAGs.

2 Preliminaries

Let Σ be a totally ordered alphabet. An element of Σ∗ is called a string.
The length of a string w is denoted by |w|. The empty string ε is a string of
length 0. For a string w = xyz, x, y and z are called a prefix, substring, and
suffix of w, respectively. The length of a string w is denoted by |w|. The
i-th character of a string w is denoted by w[i] for each 1 ≤ i ≤ |w|. For a
string w and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring
of w that begins at position i and ends at position j. For convenience, let
w[i..j] = ε when i > j.

Any strings x, y ∈ Σ∗ of equal lengthm are said to be order-isomorphic [11]
if the relative orders of the characters of x and y are the same, i.e., x[i] ≤
x[j] ⇐⇒ y[i] ≤ y[j] for any 1 ≤ i, j ≤ m. A non-empty pattern string
p is said to order-preserving match (op-match in short) a non-empty text
string t iff there is a position i in t such that p ≈ t[i − |p| + 1..i]. The
order-preserving pattern matching (OPPM ) problem is to find all such text
positions.

For any string x of length m, an integer i (1 ≤ i < m) is said to be an
order-preserving border of x if x[1..i] ≈ x[m− i+ 1..m].

We consider the following two variants of the OPPM problem: Assume
that the set of text strings is given as a tree T or a DAG G where each
edge is labeled by a character from Σ. A pattern string p of length m is
said to op-match a tree T (resp. a DAG G) if p op-matches the label of a
path in T (resp. G). In this paper, we consider the locating version of the
OPPM on trees and the decision version of the OPPM on DAGs, which are
respectively defined as follows.

Problem 1 (The OPPM problem on trees) Given a pattern string p
and an edge-labeled tree T , report the final node of every path in T that p
op-matches.
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Problem 2 (The OPPM problem on DAGs) Given a pattern string p
and an edge-labeled DAG G, determine whether p op-matches G or not.

3 Order preserving pattern matching on trees

Our algorithm for order preserving pattern matching on a text tree is in-
spired by the algorithms for order preserving pattern matching on a text
string [11, 7]. We will utilize the following tools in our algorithm.

For any string x let LMaxx be an array of length |x| such that LMaxx[i] =
j if x[j] = max{x[k] | 1 ≤ k < i, x[k] ≤ x[i]}. Similarly, let LMinx be an
array of length |x| such that LMinx[i] = j if x[j] = min{x[k] | 1 ≤ k <
i, x[k] ≥ x[i]}. If there is no such j, then let LMaxx[i] = 0 and LMinx[i] = 0,
respectively. If there are several such j’s, then we select the rightmost one
among them.

Lemma 1 ([11]) Given a string x, we can compute the LMaxx and LMinx

arrays in O(sort(x)) time, where sort(x) is the time to sort the elements of
x.

Lemma 2 ([7]) For strings x and y, assume x[1..i] ≈ y[1..i] for 1 ≤ i <
min{|x|, |y|}. Let a = LMaxx[i + 1] and b = LMinx[i + 1]. Let α be the
condition that y[a] < y[i + 1] and β be the condition that y[i + 1] < y[b].
Then, x[1..i + 1] ≈ y[1..i + 1] ⇐⇒ (α ∧ β) ∨ (¬α ∧ ¬β). In case a or b is
equal to 0, we assume the respective condition α or β is true.

Let p be a pattern string of length m. We compute the order-preserving
border array Bp of length m such that Bp[1] = 0 and Bp[i] = max{j | j <
i, p[1..j] ≈ p[i − j + 1..i]} for 2 ≤ i ≤ m. Namely, Bp[i] stores the largest
order-preserving border of the prefix p[1..i]. Suppose that LMinp and LMax p

have already been computed using Lemma 1. Kubica et al. [11] showed that
using a variant of the Morris-Pratt (MP) algorithm [12] based on Lemma 2,
the Bp array can be computed in O(m) time. Then, given a text string t of
length n, all positions i in t where p ≈ t[i −m + 1..i] can be computed in
O(n) time.

We will extend the above algorithm to the case where the text strings
are given as a tree T of size N . It is convenient to consider an MP-style
automaton Ap based on the op border array Bp such that the set of states is
{s0, . . . , sm}; the initial state is s0; the only accepting state is sm; for each
1 ≤ i ≤ m there is a goto transition from si−1 to si with character c = p[i];
and there is a failure transition from si to sj iff Bp[i] = j. See Fig. 1 for
a concrete example of Ap. We run Ap over the text tree T in depth first
manner. Let v be any node in T . For any 1 ≤ i ≤ m, let vi denote the ith
ancestor of v (if it exists), and path(vi, v) the path label from vi to v. At each
node v visited during the DFS, we compute the length ℓ(v) of the longest
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s1 s2 s3 s4

9

s0 s5 s6
4 18 2 21 30

Figure 1: The MP-style automaton Ap for pattern string p =
(9, 4, 18, 2, 21, 30). The solid arcs denote the goto transitions, and the broken
arcs do the failure transitions.

path vℓ(v), . . . , v such that p[1..ℓ(v)] ≈ path(vℓ(v), v). We report every node
v with ℓ(v) = m. If ℓ(v) < m, then we store a pointer to state sℓ(v) at node
v, and otherwise we store a pointer to state s′ at node v, where s′ is the
state pointed by the failure transition of sℓ(v).

Suppose we have just visited node v. Initially, let ℓ ← ℓ(v). Let u be
any child of v and let c be the edge label from v to u. We proceed to node
u and find ℓ(u). We test if the characters path(vℓ, u)[a] and path(vℓ, u)[b]
satisfy one of the conditions in Lemma 2, where a = LMax p[ℓ + 1] and
b = LMinp[ℓ + 1]. If they do, then we let ℓ(u) = ℓ + 1 and proceed with
the DFS. Otherwise, then let ℓ ← Bp[ℓ], and repeat the above procedure
until we find the largest ℓ with which one of the conditions in Lemma 2 is
satisfied. For each candidate ℓ above, accessing the character path(vℓ, u)[a]
from the currently visited node u means accessing the (ℓ−a+1)th ancestor
of u. Let L be the length of the longest path in T . During the DFS, we
store the edge labels of the current path from the root into an array of length
L. Using this array we can access path(vℓ, u)[a] (and path(vℓ, u)[b]) in O(1)
time. It is easy to update this array during the DFS, in total O(N) time.
When we come back to node v after a back track, then we resume pattern
matching from state sℓ(v) of Ap using a pointer stored at v, and proceed to
the next child of v. This pointer is used after a back track.

One delicacy remains. For a single text string the number of candidate
ℓ’s, which is the same as the number of failure transitions used per text
character, can be amortized constant. This amortization argument is based
on the fact that the total number of times the failure transitions are used for
the whole text cannot exceed the total number of times the goto transitions
are used in the automaton Ap, which is bounded by the length of the single
text string. However, in our tree case, this amortization argument does not
hold if we carelessly continue the DFS at branching nodes that are close to
leaves, leading to O(mN) worst case time. See Appendix for an example.
To avoid this, at each node u of the tree T we store the distance Du between
u and a furthest leaf in the subtree rooted at u. Namely, Du is the length of
the longest path from u and a leaf below u. Suppose that we are currently
visiting a node u during the DFS with Du ≥ m− ℓ, and that the respective
state of the automaton Ap is sℓ (Notice that if Du < m − ℓ, then clearly
the pattern p does not op-match any path ending in the subtree under u,
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and thus we need not search the subtree under u in this case). Let v be any
child of u. If at least one of the conditions of Lemma 2 is satisfied, then
we let ℓ ← ℓ + 1 and the DFS proceeds to v. Otherwise, we let ℓ ← Bp[ℓ]
and check if Du ≥ m − ℓ holds each time the value of ℓ gets updated. We
stop updating ℓ as soon as we encounter ℓ for which Du < m − ℓ, and the
DFS immediately starts a back track from this child v. This permits us
to charge the cost for amortization to the length Du of this longest path
under u. Thus, this method correctly finds all locations in the tree T where
p op-matches. We can easily precompute Du for all nodes u in T in O(N)
total time by a standard traversal on T .

Overall, we obtain the main result of this section.

Theorem 1 Given a pattern p of length m and a text tree T of size N , the
OPPM problem on trees (Problem 1) can be solved in O(sort(p) +N) time.

For general ordered alphabets, sort(p) = O(m logm). For integer alphabets
of size mO(1), sort(p) = O(m). For integer alphabets of size NO(1), sort(p) =
O(m+N).

4 Order preserving pattern matching on DAGs

A string x is said to be a subsequence of another string t if there exists an
increasing sequence of positions 1 ≤ i1 < · · · < i|x| ≤ |t| of t such that
x = t[i1] · · · t[i|x|]. Intuitively, x is a subsequence of t if x can be obtained
by removing zero or more characters from t.

The order-preserving subsequence matching problem (OPSM in short)
is, given a pattern string p and a text string t, to determine whether there
is a subsequence s of t such that p ≈ s. This problem is known to be
NP-complete [5].

Theorem 2 The OPPM problem on DAGs (Problem 2) is NP-complete.

Proof It is clear that the OPPM problem on DAGs is in NP. The proof
for NP-completeness is via the above OPSM problem. Suppose p is a given
pattern string and t is a given text string for the OPSM problem. Consider
the directed acyclic subsequence graph (DASG in short) [4] Gt = (V,E) such
that

V = {v0, . . . , v|t|},

E = {(vi, c, vj) | c = t[j] and t[k] 6= c for i < ∀k < j}.

The DASG Gt represents all subsequences of t, i.e., s is a subsequence of t
if and only if there is a path in Gt of which label coincides with s (see Fig. 2
for an example). Hence, if we can solve the op-matching problem for the
given pattern string p and the DASG Gt, then we can immediately solve the
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5 2 1 4 3 6
v0 v1 v2 v3 v4 v5 v6

Figure 2: The DASG Gt of string t = (5, 2, 1, 4, 3, 6). At each node, every
in-coming edge is labeled with the same character.

OPSM problem. The size of DASG Gt is clearly polynomial in the length of
the given text t and Gt can be easily constructed in polynomial time. This
completes the proof. �
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A Appendix

In this appendix, we show that applying a Morris-Pratt type algorithm for
the order-preserving pattern matching (OPPM) problem to a text tree as is
can lead to O(mN) worst-case time for some instances.

Consider a complete binary tree T of height h such that

• the path from the root to each node of depth h − 2 is labeled by
non-negative integers in increasing order,

• the two out-going edges of each node of depth h − 2 are labeled by 0
and 1, and

• the edge leading to any leaf is labeled by any character.

Also, consider pattern string p = (2, 3, . . . ,m+ 1) of length m ≤ h− 2. See
Fig. 3 for a concrete example of tree T and pattern p.

The failure transition of each state si of the automaton Ap points to state
si−1. Suppose we have arrived at a node v of depth h−2 during the DFS. By
the definitions of tree labels and p, pattern p op-matches the path of length
m ending at this node v, and hence the current state of the automaton is
sm. Now we proceed to a child of v, say u, and suppose that the edge label
from v to u is 0 (the case with the edge label being 1 is analogous). Since
the edge label is 0, the longest prefix of p that op-matches a path ending at
u is p[1] = 1 and hence m − 1 failure transitions are used at this point of
the DFS.

The tree T contains K = 2h leaves and hence contains N = 2K−1 total
nodes. The number of tree edges labeled by 0 is K/2 = (N + 1)/4. Thus,
the total number of times the failure transitions are used is Θ(mN) for this
tree T and pattern p.

We remark that the same instance leads to an O(mN) worst-case time
bound for the parameterized pattern matching (PPM) problem on trees as
well.

For the exact pattern matching problem, if we allow out-going edges of
a node to have the same labels, then it is easy to show O(mN) worst-case
time bound: In the above example, replace 0 with b, 1 with c, and all the
other tree edge labels with a. For pattern p = am, the total number of
failure transitions of the Morris-Pratt automaton used for this new tree and
p is Θ(mN).
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Figure 3: To the left is a tree complete binary tree T of height h = 6, where
the gray subtrees are omitted. To the right is the MP-style automaton Ap

for pattern string p = (2, 3, 4) with m = 3. Suppose we have arrived at node
v3 during the DFS. Since p = (2, 3, 4) ≈ (33, 34, 35), the current state of Ap

is s3. We proceed to node v4 with the DFS. Since there was a match at the
previous node v3, we follow the failure transition of s3, the current state of
Ap becomes s2, and a pointer to s2 is stored at node v3. Now we perform
order preserving pattern matching. Since (2, 3, 4) 6≈ (34, 35, 0), we follow
the failure transition of s2 and the current state of Ap becomes s1. Since
(2, 3) 6≈ (35, 0), we again follow the failure transition of s1 and the current
state of Ap becomes s0. Finally, since (2) ≈ (1), the current state of Ap

becomes s1 and a pointer to s1 is stored at node v4. When we come back
to node v3 after a back track, the same amount of work as above is needed
for the other child v7. This applies to any node of the tree T with out-going
edges labeled by 0 and 1.
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