Skip to main content

Detecting Toxicity Pathways with a Formal Framework Based on Equilibrium Changes

  • Conference paper
  • First Online:
Book cover Computational Methods in Systems Biology (CMSB 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10545))

Included in the following conference series:

  • 971 Accesses

Abstract

Toxicology aims at studying the adverse effects of exogenous chemicals on organisms. As these effects mainly concern metabolic pathways, reasoning about toxicity would involve metabolism modeling approaches. Usually, metabolic network models approaches are rule-based and describe chemical reactions, indirectly depicting equilibria as results of competing rule kinetics. By altering these kinetics, an exogenous compound can shift the system equilibria and induce toxicity. As equilibria are kept implicit, the identification of possible toxicity pathways is hindered as they require a fine understanding of chemical reactions dynamics to infer possible equilibria disruptions. Paradoxically, the toxicity pathways are based on a succession of very abstract (coarse grained) events. To reduce this mismatch, we propose a more abstract framework making equilibria first-class citizens. Our rules describe qualitative equilibrium changes and the chaining of rules is controlled by constraints expressed in extended temporal logic. This higher abstraction level fosters the detection of toxicity pathways, as we will show through an example of endocrine disruption of the thyroid hormone system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barter, R.A., Klaassen, C.D.: Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats. Toxicol. Appl. Pharmacol. 128(1), 9–17 (1994)

    Article  Google Scholar 

  2. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS, vol. 3082, pp. 172–191. Springer, Heidelberg (2005). doi:10.1007/978-3-540-25974-9_14

    Chapter  Google Scholar 

  4. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-based software model checking. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24756-2_8

    Chapter  Google Scholar 

  5. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: LIPIcs-Leibniz International Proceedings in Informatics, vol 18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

    Google Scholar 

  6. Dentice, M., Salvatore, D.: Local impact of thyroid hormone inactivation deiodinases: the balance of thyroid hormone. J. Endocrinol. 209(3), 273–282 (2011)

    Article  Google Scholar 

  7. Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68894-5_3

    Chapter  Google Scholar 

  8. Isler, H., Leblond, C., Axelrad, A.: Influence of age and of iodine intake on the production of thyroid tumors in the rat 2. J. Natl. Cancer Inst. 21(6), 1065–1081 (1958)

    Google Scholar 

  9. Kavlock, R.J., Ankley, G., Blancato, J., Breen, M., Conolly, R., Dix, D., Houck, K., Hubal, E., Judson, R., Rabinowitz, J., et al.: Computational toxicologya state of the science mini review. Toxicol. Sci. 103(1), 14–27 (2008)

    Article  Google Scholar 

  10. Kopp, P.: Thyroid Hormone Synthesis. Werner and Ingbars The Thyroid. A Fundamental and Clinical Text, 10th edn., pp. 48–74 (2012)

    Google Scholar 

  11. Maia, A.L., Goemann, I.M., Meyer, E.L.S., Wajner, S.M.: Type 1 iodothyronine deiodinase in human physiology and disease deiodinases: the balance of thyroid hormone. J. Endocrinol. 209(3), 283–297 (2011)

    Article  Google Scholar 

  12. Marians, R., Ng, L., Blair, H., Unger, P., Graves, P., Davies, T.: Defining thyrotropin-dependent and-independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc. Natl. Acad. Sci. 99(24), 15776–15781 (2002)

    Article  Google Scholar 

  13. McClain, R.M.: Thyroid gland neoplasia: non-genotoxic mechanisms. Toxicol. Lett. 64, 397–408 (1992)

    Article  Google Scholar 

  14. Moeller, L.C., Cao, X., Dumitrescu, A.M., Seo, H., Refetoff, S.: Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl. Recept. Sig. 4, e020 (2006)

    Google Scholar 

  15. Nagasaki, M., Onami, S., Miyano, S., Kitano, H.: Bio-calculus: Its concept and molecular interaction. Genome Inf. 10, 133–143 (1999)

    Google Scholar 

  16. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: an abstraction for biological compartments. Theoret. Comput. Sci. 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rosene, M.L., Wittmann, G., Arrojo e Drigo, R., Singru, P.S., Lechan, R.M., Bianco, A.C.: Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151(12), 5961–5970 (2010)

    Article  Google Scholar 

  18. Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68894-5_2

    Chapter  Google Scholar 

  20. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153(1), 1–23 (1991)

    Article  Google Scholar 

  21. Visser, T.J.: Role of sulfation in thyroid hormone metabolism. Chem. Biol. Interact. 92(1–3), 293–303 (1994)

    Article  Google Scholar 

  22. Williams, G.R., Bassett, J.D.: Local control of thyroid hormone action: role of type 2 deiodinase deiodinases: the balance of thyroid hormone. J. Endocrinol. 209(3), 261–272 (2011)

    Article  Google Scholar 

  23. Zoeller, R.T., Tan, S.W., Tyl, R.W.: General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit. Rev. Toxicol. 37(1–2), 11–53 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Miraglio .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 1 and 2

Table 1. The signature of \(\mathcal {E}_\text {thy}\), including the different set of admissible levels.
Table 2. The \(R_\text {thy}\) action network.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Miraglio, B., Bernot, G., Comet, JP., Faverney, C.Rd. (2017). Detecting Toxicity Pathways with a Formal Framework Based on Equilibrium Changes. In: Feret, J., Koeppl, H. (eds) Computational Methods in Systems Biology. CMSB 2017. Lecture Notes in Computer Science(), vol 10545. Springer, Cham. https://doi.org/10.1007/978-3-319-67471-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67471-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67470-4

  • Online ISBN: 978-3-319-67471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics