
Methods to Expand Cell Signaling Models using
Automated Reading and Model Checking

Kai-Wen Liang1, Qinsi Wang1, Cheryl Telmer1, Divyaa Ravichandran1, Peter
Spirtes1, and Natasa Miskov-Zivanov2

1 Carnegie Mellon University, Pittsburgh PA 15213, USA,
2 University of Pittsburgh, Pittsburgh, PA, 15213, USA

Abstract. Biomedical research results are being published at a high
rate, and with existing search engines, the vast amount of published work
is usually easily accessible. However, reproducing published results, ei-
ther experimental data or observations is often not viable. In this work,
we propose a framework to overcome some of the issues of reproducing
previous research, and to ensure re-usability of published information.
We present here a framework that utilizes the results from state-of-the-
art biomedical literature mining, biological system modeling and analy-
sis techniques, and provides means to scientists to assemble and reason
about information from voluminous, fragmented and sometimes incon-
sistent literature. The overall process of automated reading, assembly
and reasoning can speed up discoveries from the order of decades to the
order of hours or days. Our framework described here allows for rapidly
conducting thousands of in silico experiments that are designed as part
of this process.
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1 Introduction

Modeling, among many other advantages, facilitates explaining systems that we
are studying, guides our data collection, illuminates core dynamics of systems,
discovers new questions, or challenges existing theories[1]. However, the creation
of models most often relies on intense human effort: model developers have to
read hundreds of published papers and conduct numerous discussions with ex-
perts to understand the behavior of the system and to construct the model. This
laborious process results in slow development of models, let alone validating the
model and extending it with thousands of other possible component interactions
that already exist in published literature. At the same time, research results are
published at a high rate, and the published literature is voluminous, but often
fragmented, and sometimes even inconsistent. There is a pressing need for au-
tomation of information extraction from literature, smart assembly into models,
and model analysis, to enable researchers to re-use and reason about previously
published work, in a comprehensive and timely manner.

In recent years, there has been an increasing effort to automate the pro-
cess of explaining biological observations and answering biological questions.
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The goal of these efforts is to allow for rapid and accurate understanding of
biological systems, treatment and prevention of diseases. To this end, several
automated reading engines have been developed to extract interactions between
biological entities from literature. These automated readers are capable of find-
ing hundreds of thousands of such interactions from thousands of papers in a few
hours[2]. However, in order to accurately and efficiently incorporate these pieces
of knowledge into a model, we need a method to distinguish useful relationships
from vast amounts of extracted information. The revised model often retains
properties of the baseline model, but at the same time reflects new properties
that the baseline model fails to satisfy, or suggests minimal interventions in the
model that can lead to significant changes in outcomes.

To this end, the contributions of our work include: (i) Method to utilize
previous research and published literature to validate existing knowledge about
diseases, test hypotheses and raise new questions; (ii) Framework to rapidly
conduct hundreds of in silico experiments via stochastic simulation and statis-
tical model checking; (iii) Pancreatic cancer microenvironment case study that
demonstrates the framework’s effectiveness.

Fig. 1. Steps of our model extension approach.

Our framework is summarized in Fig. 1. The remainder of the paper is or-
ganized as follows. In Section 2 we provide details about the types of events
extracted from literature. In Section 3, we outline methods to extend models.
In Section 4, we describe model analysis methods. The results of applying our
framework to pancreatic cancer microenvironment model are presented in Sec-
tion 5. We discuss several important issues in Section 6 and conclude the paper
with Section 7.

2 Events in biomedical literature

In this work, we focus on cellular pathways, that is, signal transduction, metabolic
pathways and gene regulation. The literature that covers cellular pathways usu-
ally includes details such as molecular interactions, gene knock outs, inhibitors,
stimulation with antigens. We conducted a brief exercise on a sample set of para-
graphs from such published literature. The descriptions found in papers can be
organized in three groups: qualitative, quantitative and semi-quantitative. Fig.
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2a shows examples of these three types of descriptions and the average number
of occurrences for each type of interaction in the sample paragraph set. Auto-
mated reading engines[2] can extract events in the form of frames that contain
an interaction with two entities (arguments). We list in Fig. 2b the interaction
and entity types that are recognized by reading engines and that we use in this
work. Here, we represent each interaction as a pair (u, v), where u is the regula-
tor and v is the regulated element. For the first example sentence in Qualitative
description in Fig. 2b, we can obtain two interaction pairs, (Ras, PIK3CA), and
(Ras,BRAF ).

Fig. 2. Reading output: (a) Examples of the three types of interactions found in papers
and the average number of occurrences of each type in a sample paragraph set; (a)
Types of interactions and their arguments (entities).

2.1 Baseline model type

The interaction map of a model can be expressed as a directed graph G = (V,E).
The set of vertices, V , represents model elements, vi ∈ V , i = 1..N , where N
is the number of elements in the model. The set of edges, E, (vj , vi) ∈ E,
represents causal interactions between elements, that is, relationships of type
affects/is-affected-by. The polarity of interactions (positive or negative) is also
included in the interaction map.

In order to capture the type of information that most often occurs in pub-
lished texts, as outlined in Fig. 2(a), we are using logical modeling approach.
In logical models of cellular signaling, each element from the interaction map G
has a corresponding Boolean variable xi ∈ {0, 1}. The update rule for a vari-
able xi is a logic function of variables xj ’s, where each xj has a corresponding
vertex vj ∈ V , such that (vj , vi) ∈ E. That is, fi : {0, 1}ki → {0, 1}, where
ki = |{vj : (vj , vi) ∈ E}| is the in-degree of vertex vi . For a logical model with n
elements, there are 2n possible configurations of variable values, and each config-
uration is called a state. The logical modeling approach works well with informa-
tion extracted from text data, since the logical rules can be used to express the
qualitative descriptions easily. For example, from the second example sentence in
Qualitative description in Fig. 2a, we could extract two interactions (GTP,Ras)
and (!GDP,Ras), where ’ !’ indicates negative regulation. We can implement all
three elements, GTP, GDP, and Ras as Boolean variables, and write a logical rule
for updating value of variable Ras as, for example, Ras = GDP and not GTP .
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2.2 New interaction classification

Often, the computational modelers start with a baseline model, and they add the
information extracted from literature to the model. In order to add the extracted
events, they first need to be classified according to their relationship to a given
model. The output from reading engines can be related to the model in several
ways:

(i) Corroborations: The interaction from reading output matches an inter-
action already in the model. An example of corroboration is shown with green
arrow in Fig. 3a.

(ii) Extensions: The interaction from reading output is not found in the
baseline model. An example of extension is shown with blue arrow in Fig. 3a.

(iii) Contradictions: The interaction from reading output suggests a different
mechanism from the model (for example, activation vs. inhibition). An example
is shown with red arrow in Fig. 3a. In this work, we study extensions only, that
is, new interactions that can be added to the model. Handling contradictions is
part of our future work.

3 Model extension

In Fig. 3b we show a toy example of model interaction map (solid arrows) and
several extensions extracted by automated reading (dashed arrows). There are
three kinds of model extensions (illustrated in Fig. 3b):

1. Interactions where both elements are already in the model (edges (E,D)
and (F,D) in Fig. 3b). This kind of extension usually has a direct influence
on the behavior of the model: when adding a new interaction between elements
in the model, we are creating a new pathway or generating feed-forward or
feedback loops. These structural changes may lead to a significant difference in
the regulatory behavior.

2. Interactions where only one element is in the baseline model (for edge
(H,A) in Fig. 3b the regulated element is in the baseline model, while the reg-
ulator is not; for edge (G, I) the regulator is in the baseline model while the
regulated element is not). In cases where the regulated element is not in the
baseline model, the regulated element will just hang from a pathway without
having direct influence on the model. On the other hand, in extensions where
the regulator is outside the baseline model, the regulator can act as a new model
input, allowing for additional network control.

3. Interactions consist of elements outside the baseline model (edges (M,K),
(K,J)). Such interactions alone do not affect the behavior of the model. However,
when we are considering multiple extensions simultaneously, additional regula-
tory pathways may be constructed that will have effect on model behavior. The
path M → K → J → H → A in Fig. 3b is an example of newly formed pathway.

3.1 Interaction map extension

Each interaction of extension type can be regarded as a candidate new edge
in the model’s interaction map. Let Eext be the set of interactions provided
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Fig. 3. Relationship between reading output and model. (a) The literature reading-
assembly flow with example. (b) Example baseline model (solid arrows) and new inter-
actions extracted by automated reading (dashed arrows). The circled numbers represent
classification described in Sec. 2.2

by reading. Suppose the baseline model is G = (V,E). Each new candidate
model can be obtained by adding a group of selected edges Enew ∈ Eext and its
corresponding elements, that is, G′ = (V ′, E′), where E′ = E∪Enew. However, it
is impossible to enumerate all configurations of whether or not to add a new edge,
as the number of candidate models will become extremely large. For example,
if there are 100 new interactions extracted by the automated reader, there are
2100 possible extensions of the model. This number is impossible to handle,
therefore, we need heuristic methods to search for suitable configurations of
model extensions.

A possible way to tackle the issue of large number of model extension config-
urations, is to list the elements of interest in the baseline model, and include, as
an extension, interactions that are related to those elements. The set of model
elements of interest can be defined by user, depending on the questions asked or
hypotheses tested. Still, the extension configurations need to be constructed in
a systematic manner. Here we introduce the concept of ’layer’, where layer S0 is
the set of elements of interest. The next layer, S1, is the set of direct parents of
elements in S0, and in general, Si is the set of direct parents of elements in Si−1.
Elements in S1 are direct regulators of S0, and thus, the extensions including
elements in S1 may influence the model. Using this concept, we propose four
different methods to create extension configurations.

Cumulative parent set with direct extensions (CD): In this method,
we define the number of layer, n, that we want to consider, and include all new
interactions that affect any element from layer 0 up to layer n. In other words,
we add an extension e = (u, v) to the model when at least one of the nodes
u and v is mentioned in layers S0 to Sn. Fig. 4b demonstrates the result of
this method where n equals 1. Starting from S0 = {A,B,E}, we find its direct
parents S1 = {C,D}. The edges in the figure represent the union of layers S0 and
S1. The advantage for this method is that it includes as many relevant extensions
as possible within a certain distance from the elements of interest. However, due
to the large number of elements added, the behavior of the model may become
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Fig. 4. Results from different extension methods: (a) The baseline model and the ex-
tensions from automated reading; (b) The result from method CD with n = 1; (c) The
result from ND with n = 1; (d) The result from CI with n = 1; (e) The result from NI
with n = 1 and m = 1.

intractable within a few layers, that is, if the behavior deviates from what we
expect, it is hard to pin-point the source of the change.

Non-cumulative parent-set with direct extensions (ND): This method
can be used when we want to know the influence only from the nth layer. When
creating each layer, we exclude the elements that are already mentioned in the
previous layer, and repeat this process for n times. As a result, from all elements
in the ND set, layer 0 can be reached within n steps. We add extension e = (u, v)
to the model if and only if u or v is in the ND set. Fig. 4c is an example with
n = 1. After acquiring the layer S1, we exclude the elements in the previous
layer S0, so we only include edges containing elements in S1. Compared to the
results of the CD method, ND method helps identify individual extension layers
that may cause significant changes to the performance in different properties.

Cumulative parent-set with indirect extensions (CI): In the previous
two methods, we find each layer only by looking for direct parents of previous
layer, that is, the regulators that are already in the baseline model. In this
method, we also look for indirect parents. In the example shown in Fig. 4d, we
start from S0 = {A,B,E}, which has as direct parents nodes C and D, and as
an indirect parent node F . Therefore, if we consider indirect parents, S1 includes
{C,D, F}. The result in Fig. 4d is obtained by adding edges including elements
in S0 or S1 into the model. This method incorporates more elements into the
model, allowing us to examine the behavior of the model including all edges
within certain layers. It also includes pathways outside the baseline model more
often then the other methods. However, just like the first method, the behavior
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here may become intractable when n is large, especially when the network outside
the baseline model is complicated.

Non-cumulative parent-set with indirect extensions (NI): This method
is the combination of the two previous methods. The goal of this method is to
provide information about influence on property values of m layers containing
indirect edges, starting from the nth layer. In other words, we first look at the
nth layer using the ND method, and perform the operation of CI for m times
to find all the layers we are interested in. From Fig. 4e, we can see that using
one ND step, we get the layer S1 = {C,D}. Using CI for another time, we have
the set S1,1 = {G,H}. Adding elements mentioned in S1 and S1,1 results in the
structure in 4e. This method can be more comprehensive than ND, giving us
a more thorough understanding of the extensions. However, it could also suffer
from the issue of being intractable if m is large.

3.2 Executable rule updating

After choosing extension classification method and proper parameters for layer
numbers, we create model extension sets. These sets extend the static interaction
map of the model. Logical rules, on the other hand, allow for dynamic analysis of
the model, as variable states change in time according to their update functions.
Therefore, the set of logic update rules represents executable model. Incorporat-
ing new components into executable model rules can be done in several different
ways. For example, if the original rule is A = BorC, and the extension interac-
tion states that D positively regulates A, then the new update rule for A can
be either A = (BorC)andD, or A = BorCorD. Other logic functions could be
derived as well, but this largely depends on the information available in reading
output about these interactions. Given that individual reading outputs only pro-
vide information of type ’participant a regulates participant b’ (in our example,
D positively regulates A), and no additional information about interactions with
other regulators is given (in our example, that would be combined regulations of
A by B, C and D), we use two naive approaches, which is to add new elements
to update rules using either OR or AND operation.

4 Property testing

After obtaining different extended models using the methods in Section 3, we
evaluate the performance of each model by checking whether each extended
model satisfies a set of biologically relevant properties. While simulations of logi-
cal models are known to be able to recapitulate certain experimental observations[3],
verifying the results of the simulation against the properties manually is tedious
and error-prone, especially when the number of models or properties becomes
large. A feasible way to tackle this problem is to use formal methods. We use
statistical model checking that combines simulation and property checking on
simulation traces to compute the probability for satisfying each property. We
elaborate each framework component in the following subsections.
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4.1 Stochastic simulation

The original logical model and all the extended model versions are simulated
using stochastic method. We identify initial states for all model elements, x =
(x1, ..., xN ), by assigning initial values to their corresponding Boolean variables
x0 = {0, 1}n. Next, we use update rules to compute new variable values, that
is, new states of all model elements. The simulator we use is publicly available
[4,5]. In the simulator, several different simulation schemes were designed to
reflect different timing and element update approaches occurring in biological
systems. The simulation scheme we use for this work is called Uniform Step-
Based Random Sequential (USB-RandSeq) . In each simulation step, one model
element is randomly chosen, its update function is evaluated, and the value of its
corresponding variable is updated. At the beginning of simulation the number of
these sequential steps is defined. In the case of uniform update approach, all vari-
ables have the same probability of being chosen. The variable values in each step,
starting from the initial state, x0, are recorded in a trace σ = (x0,x1, . . . ,xn).
With the trace file at hand, we can use model checker to automatically verify
whether or not the model meets several properties. Since the order of updating
elements is random, when we run simulator to obtain multiple traces, the traces
of variable values across different runs can vary.

4.2 Statistical model checking

The simulation of logical models is similar to discrete-time Markov chain, which
means the verification problem is equivalent to computing the probability of
whether a given temporal logic formula is satisfied by the system. One approach
is to use numerical methods to compute the exact probability; however, this naive
implementation suffers from the state explosion problem, and does not scale well
to large-scale systems [6]. Statistical model checking provides an excellent solu-
tion to this problem, by estimating the probability using simulation and thus,
avoiding a full state space search. To verify a model via statistical model check-
ing against interesting properties, we first need to encode each property into
temporal logic formulae. Here we use Bounded Linear Temporal Logic (BLTL)
[7]. BLTL is a variant of Linear Temporal Logic [8], where the future condition
of certain logic expressions is encoded as a formula with a time bound (see the
supplementary material (http://ppt.cc/XlWF7) for BLTL’s formal syntax and
semantics). To verify whether a model satisfies the properties, statistical model
checking treats it as a statistical inference problem for the model executions gen-
erated using the randomized sampling. For a stochastic system, the probability
p that the system satisfies a property φ is unknown. Statistical model checking
can handle two kinds of questions: (i) for a fixed 0 < θ < 1, determine whether
p ≤ θ, and (ii) estimate the value of p. The first problem is solved using hy-
pothesis testing methods, while the second is solved via estimation techniques.
Statistical model checking assumes that, given a BLTL property φ, the behavior
of a system can be modeled as a Bernoulli random variable M with parameter p,
where p is the probability of the system satisfying φ. Statistical model checking

http://ppt.cc/XlWF7
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first generates independent and identically distributed samples of M . Each sam-
ple σ is then checked against the property φ, and the yes/no answer corresponds
to a 1/0 sample of the random variable M . The sample size does not need to be
fixed, as the checking procedure will stop when it achieves the desired accuracy.
This reduces the number of samples needed. The statistical model checking ha
been applied in the past to the type of stochastic simulation that we use here,
[9].

5 Results

The system that we studied is pancreatic cancer microenvironment, including
pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs). We adopted
here the model created by Wang et al.[10], which has three major parts: (1) in-
tracellular signaling network of PCC; (2) intracellular signaling network of PSC;
(3) network located in extracellular space of the microenvironment, which con-
tains mainly ligands of the receptors. In this model, several cellular functions,
such as autophagy, apoptosis, proliferation, migration, are also implemented as
elements of the model, which enables modeling of the system’s behavior that can
result from turning various signaling components ON or OFF. In total, there are
30 variables encoding intracellular PCC elements and 3 variables encoding PCC
cellular function. For PSC, there are 24 variables for intracellular elements and 4
variables for PSC cellular function. In extracellular microenvironment, there are
8 variables encoding extracellular signaling elements with 1 environment function
variable. Accordingly, there are 70 variables in the model that have associated
update functions used to compute next state of those model elements. The in-
teraction rules of this model are summarized in Table 1 in the Supplementary
material (http://ppt.cc/XlWF7).

The framework is implemented in Python. The simulator described in Section
4.1 is implemented in Java[5]. We use PRISM[11] as our statistical model checker,
which is a C++ tool for formal modeling and analysis of stochastic systems.
Evaluating a model against one property, including running the simulations,
takes about 10 minutes on a regular laptop (1.3GHz dual-core Intel Core i5,
8GM LPDDR3 memory). The other components in the framework take less
than 1 minute. We used the REACH automated reading engine [12] output
produced from 13,000 papers in publicly available domain. This output consists
of 500,000 event files, with 170,000 possible extensions of our model (other events
are corroborations or contradictions).

To demonstrate how our framework works, we identified elements of inter-
est in the model (which were suggested by cancer experts), and defined a set
of relevant properties reflecting important biological truths that the PCC-PSC
model should satisfy[13]. In Table 5, we list 20 properties that we tested using
statistical model checking. There are five major functions or phenomena that we
are interested in: (1) increased secretion of important growth factors; (2) over-
expresion of oncoproteins in PCC and PSCs; (3) inhibition of tumor suppressors
in PCCs; (4) cell functions of PCCs; (5) cell functions of PSCs.

http://ppt.cc/XlWF7
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5.1 Impact of proposed extension approaches on model

The baseline model[10] has 70 elements and 114 regulatory interactions. Al-
though there are 170,000 model extensions produced by reading, many of them
are repetitions, and some of the reading outputs were missing one of the in-
teraction participants. Therefore, in this work we used overall 1232 different
interactions from reading output, which could lead to 21232 possible models.
Studying all possible model versions is impractical, and therefore, we used the
four extension methods described in Section 3, to generate 46 different models.
Using the CD method, we generated 2 models by having 1 or 2 layers. For ND,
the number of layers we considered varied between 1 and 10, which resulted in
10 models. With CI, we used either 0, 1, 2 or 3 layers, which led to 4 different
models. Finally, for NI, we have n ranges from 1 layer to 10 layer, and m ranges
from 1 to 3, resulting in 30 models. We also test the model with all extensions
being added to the baseline model.

Fig. 5 summarizes results of our extension methods on 1232 interactions with
respect to new node connections to the model:

(i) number of new nodes regulating baseline model elements, not regulated
by baseline model elements (dark blue);
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(ii) number of new nodes regulating baseline model elements, not regulated
by any element, baseline or new (red);

(iii) number of new nodes regulated by baseline model elements, not regulat-
ing any elements in the baseline model (yellow);

(iv) number of new nodes regulated by baseline model elements, not regulat-
ing any element, baseline or new (purple);

(v) number of new nodes inserted into existing pathway - new regulators
of baseline model elements that are also regulated by baseline model elements
(green);

(vi) number of new nodes as intermediate elements of new pathways when
multiple extensions are connected (light blue);

(vii) total number of all elements used in the extension method (dark red).
In Fig. 6(a), four different sections can be observed, and each section corre-

sponds to one of the extension methods. Each method has its unique feature. For
example, the ND method only includes relationships relevant to one layer, and
this makes the number of new elements added to the model significantly smaller
than other methods. Also, the light blue nodes indicate the number of newly
added elements that are in a newly formed pathway. Since CD and ND do not
include indirect parent interactions, we can see that the number of elements in
new pathway is 0. While in CI and NI, we can tell that indirect interactions are
included. The numbers within one method show higher similarity, but we can
still observe some patterns. For example, the cumulative parent-set methods,
CD and CI show an increase in the number of new nodes when more layers are
considered. Furthermore, since NI has cumulative parents when they finish the
noncumulative part, they also experience an increase when the step of noncu-
mulative part is fixed. The numbers saturate at around 600, which is due to the
limited size of baseline model and extensions we have. This is also the reason we
choose to perform the cumulative approach for at most 3 steps.

In general, choosing the method to extend the model depends on the scenario
a user is interested in. For example, if the focus is on the regulation of a specific
element, one can track down each layer of parents using ND, and see the change
of the model after modifying that specific layer. On the other hand, if the goal
is to include as many new stimuli as possible with a fewer number of layers,
cumulative methods such as CI or CD will fit better. We selected 20 elements
as part of the base layer, since these elements appear in properties that we are
testing, leading to relatively large base layer given the size of the baseline model.
Therefore, by incorporating elements related to more than one layer, we capture
almost all extensions related to the baseline model. Thus, the ’All In’ method,
which adds all extension interactions to the baseline model at once, does not
change the counts shown in Fig. 6(a), when compared to many cases of CD, CI
and NI methods.

5.2 Impact of model extension on system properties

Fig. 6(a) shows the results of testing 48 models (baseline + All-In + 46 extended
models) with different extension method (AND/OR) and different initialization
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Fig. 5. Counts for newly added elements with certain structure (Reg. - regulator, Tgt.
- regulated element, Orig. - baseline model elements, New - newly added element).
All models studied are listed on x-axis, and y-axis is the count of new elements having
certain structure.

of the newly added elements (True/False) against the 20 properties in Table 5.
The values displayed are the estimated probabilities of each property. Just like
the basic numbers of each model, different extension methods lead to different
results of the properties. For example, we can see that the results from ND are
different from other methods. The reason is that each ND method only deals
with one layer at a time, and it will not insert new edges between elements
mentioned in the properties. This leads to a more conservative extension. Also,
for example, there are differences between OR-based ND models in properties 9
to 13 or property 4 in AND-based ND models, which are related to Inhibition
of tumor suppressors and Autophagy in PCCs. By comparing the extension
interactions added to those models, we found that the EGF (Epidermal Growth
Factor) pathway plays the most important role. The p21 (regulator of cell cycle
progression) pathway also influences the difference.

If we compare the models with different initialization of newly added nodes,
we can see the results are actually quite similar. This means that the model
is mostly influenced by the input elements in the baseline model, and to some
degree, it emphasizes the robustness of the original model. On the other hand,
if we compare extending the models with OR operations and those with AND
operations, there is a huge difference. But the interesting part is that the behavior
of models with the two types of extensions is opposite. They behave similarly only
in properties 9, 13, 16, 19 and 20, while differently in all other 15 properties. This
shows a drastic difference between AND-based and OR-based extension, and can
be further designed according to the property we want to fit. Fig. 6(b) shows
the maximum / minimum difference compared to baseline that each model can
achieve for each property. If a property probability is low in both max and min
difference, it is relatively conservative to the extension interaction. An example
is property 16, which depicts the relationship between p53 and Apoptosis. On



13

Fig. 6. (a) Results of statistical model checking of 20 properties in 68 different models.
Each entity in x-axis is a model, and each row is the estimated probability for the
corresponding property. (b) The Max and min difference from the baseline model of
each property.

the other hand, if a property probability is high in both max and min difference,
it is a property susceptible to changes via extensions.

6 Discussion

The framework we describe here, although designed to extend an existing base-
line model, can also be used to search for pathways or interactions that are vital
to certain functions, and to suggest targets for drug development. For example,
using the ND models and statistical model checker, we can study closely how
each layer of elements influences the elements we are interested in. Then, we
can pin-point the models that satisfy several properties that we desire, and we
should be able to identify a few candidates that play important roles in the
regulation. Or, by using NI method, we can further observe whether there is
actually an upstream network that controls the behavior of the elements. This
gives us a deeper understanding of the network and helps us in further model
development.
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One of our next steps is to improve the approach to incorporate new elements
into logical rules. In this work we naively incorporate those rules using OR
and AND operation. However, in reality the mutual relationships between the
regulators are not necessary an AND or OR relationship. For example, a ligand
and a receptor induce further response if they both exist, and there is another
unrelated element activating the same target. This results in a formatA = B∗C+
D. We are not able to capture this since the automated reader does not output
this information, but from online databases such as UniProt[14], we are still able
to gather pieces of knowledge about the true interaction between regulators.
Also, the automated reader does not output the location of the interaction. For
example, two types of cells, PCCs and PSCs, are in our baseline model, but we
only extend the interactions to PCCs. More information of the location can also
help us refine the extension method. As a future work, incorporating the on-line
database should give us a more accurate extension of the model. But in the long
run, if the automated reader can take into account these features, we should
be able to construct a better model more easily. Finally, aside from extensions,
the automated reader provides us with contradictions. In this work we ignore
this kind of relationship and assume absolute correctness of interaction in the
baseline model, but the contradictions serve as a great starting point to examine
the validity of the baseline model, as well as to point to further improvements
of reading engines.

7 Conclusion

We propose a framework that utilizes published work to collect extensions for
existing models, and then analyzes these extensions using stochastic simulation
and statistical model checking. With biological properties being formulated as
temporal logic, model checker can use the trace generated by the simulator to
estimate the probability that a certain property holds. This gives us an efficient
approach (speed-up from decades to hours) to re-use previously published results
and observations for the purpose of conducting hundreds of in silico experiments
with different setups (models). Our methods and the framework that we have
developed comprise a promising new approach to rapidly and comprehensively
utilize published work for an increased understanding of biological systems, in
order to identify new therapeutic targets for the design and improvement of
disease treatments.
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