SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, Rhode Island, USA

Shashi Shekhar, University of Minnesota, Minneapolis, Minnesota, USA
Xindong Wu, University of Vermont, Burlington, Vermont, USA

Lakhmi C. Jain, University of South Australia, Adelaide, South Australia, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Ontario, Canada
Borko Furht, Florida Atlantic University, Boca Raton, Florida, USA

V.S. Subrahmanian, University of Maryland, College Park, Maryland, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan

Bruno Siciliano, Universita di Napoli Federico II, Napoli, Italy

Sushil Jajodia, George Mason University, Fairfax, Virginia, USA

Newton Lee, Newton Lee Laboratories, LLC, Tujunga, California, USA

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Niklas Biischer ¢ Stefan Katzenbeisser

Compilation for Secure
Multi-party Computation

@ Springer

Niklas Biischer Stefan Katzenbeisser

Security Engineering Group Security Engineering Group
Technische Universitidt Darmstadt Technische Universitit Darmstadt
Darmstadt, Germany Darmstadt, Germany

ISSN 2191-5768 ISSN 2191-5776 (electronic)
SpringerBriefs in Computer Science

ISBN 978-3-319-67521-3 ISBN 978-3-319-67522-0 (eBook)

https://doi.org/10.1007/978-3-319-67522-0
Library of Congress Control Number: 2017954354

© The Author(s) 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-67522-0

In memory of Helmut Veith.

Preface

An ever-growing amount of data is processed by online services every day.
Unfortunately, data owners are at risk to lose control over their possibly sensitive
data once it is deployed at an untrusted third party. A solution to this dilemma is
Secure Multi-party Computation (MPC), which has emerged as a generic approach
to realize Privacy-Enhancing Technology in a cryptographically sound manner,
as it allows to perform arbitrary computations between two or more parties over
encrypted data. In recent years, numerous protocols and optimizations have made
MPC practical for relevant real world scenarios. This development has led to a
significant improvement in the performance and size of applications that can be
realized with MPC.

A major obstacle in the past was to generate MPC applications by hand. Recently
special compilers have been developed to build all kinds of applications. In this
book, we summarize our research on the compiler CBMC-GC for MPC over
Boolean circuits. We show and explain how efficient MPC applications can be
created automatically from ANSI-C, which bridges the areas of cryptography, com-
pilation and hardware synthesis. Moreover, we give an insight into the requirements
for creating efficient applications for MPC, and thus we hope that this work can be
of interest not only to researchers in the area of MPC but also developers realizing
practical applications with MPC.

The authors wish to thank Andreas Holzer, Martin Franz and Helmut Veith,
with whom we started the research on compilers for MPC. Moreover, we wish to
thank our students Alina Weber and David Kretzmer who contributed ideas and
implementations to the later parts of this book. This work has been co-funded by
the DFG as part of project S5 within the CRC 1119 “CROSSING” and by the DFG
within the RTG 2050 “Privacy and Trust for Mobile Users”.

Darmstadt, Germany Niklas Biischer
August 2017 Stefan Katzenbeisser

vii

Contents

1 Introductionooiiiiiiiiiii e 1
Lol MIOTIVALION « .ttt aaaes 1
1.2 Classification of MPC Compilersoovvviiiiiiiiiininnnnnn.. 3
1.3 Outline of the BOOKuuuii i 4
2 Background................o 5
2.1 Boolean CirCUIts ..ovvveeiieiiiiiiiieie e eeeeeeeeeeenns 5
2.2 Secure COMPULATION ..ovvirrreeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaanaaanns 6
2.2.1 Oblivious Transfercoooviiiiiiiiiiieeeeennns 7
2.2.2 Yao’s Garbled Circuits Protocolooeee 7
2.2.3 Goldreich-Micali-Wigderson (GMW) Protocol 9
2.3 Benchmarking Applications for MPC Compilers 10
3 Compiling ANSI-C Code into Boolean Circuits 15
3.1 Motivation and OVEIVIEWcoveeieiiieeeeeeeeaeeeaeeeeaaaaaaanns 15
3.2 Background: Bounded Model Checkingcoovvennnnn. 17
3.3 CBMC-GC’s Compilation Chain............coooiiiiiiiiiiiiiiiiinnnn.. 18
3.3.1 Input Language and Circuit Mapping....................oo.een. 18
3.3.2 CParser and Type Checkingcoovviiiiiiiiinnnnnn. 19
3.3.3 GOTO CONVETSION «evteeeeeeeeeeeeeeeeeeeeeeeeeaeeeaeaaaaaaannns 20
334 LoopUnrollingoovvviiiiiiiiiiiiiie e 21
3.3.5 Conversion into Single Static Assignment Form................ 23
3.3.6 Expression SimplificationceLL 24
3.3.7 Circuit Instantiation.................coviiiiiiiiiiiii ... 24
3.4 Complexity of Operations in MPC ... 26

4 Compiling Size-Optimized Circuits for Constant-Round MPC
Protocols 29
4.1 Motivation and OVEIVIEWoovviiiiiiiiiiiiiiiiiiiiiiiiiieieeaaannnn. 29
4.2 Circuit Minimization for MPCooooiiiiiiiiiiiiiiiiii .. 32
4.3 Building Blocks for Boolean Circuit Based MPC...................... 33
4.4 Gate-Level Circuit Minimization............ccovviviiiiiiiiiiinnnnn... 35

ix

X Contents

4.5 Evaluationcooiinniiiettiii e 39
4.5.1 Evaluation of Circuit Minimization Techniques 39
4.5.2 Compiler COMPAriSONueeeeeriiuiiiieeeeiniieeeeannn. 41
5 Compiling Parallel Circuits.................................oooL L. 43
5.1 Motivation and OVeIVIEWoovveeirieeiiiiiee i iieeeeeeeeeiaeaannnnn, 43
5.2 Parallel Circuit Evaluation...................oo e 44
5.3 Compiler Assisted Parallelization Heuristics 46
5.3.1 Fine-Grained Parallelization (FGP)............................. 46
5.3.2 Coarse-Grained Parallelization (CGP).......................... 48
5.4 Evaluation of Parallelization in Yao’s Garbled Circuits................ 52
S54.1 UIraSFE ... 52
5.4.2 Evaluation Methodologycccoviiiiiiiiiiiiiiiiiinnnnnns 53
5.4.3 Circuit Garbling (Offline)ccoooiiiiiiiiiiiiiiiiinn. 55
5.4.4 Full Protocol (Onling)coovveeiiiiiiiiieeeiiiiiiannn 58

6 Compiling Depth-Optimized Circuits for Multi-Round MPC
Protocolscooii i 61
6.1 Motivation and OVEIVIEWovviieiiiiiiiiee e iieeeeeeeeeaaaaaaaannns 61
6.2 Compilation Chain for Low-Depth Circuitsoooee. 62
6.2.1 Preprocessing Reductionsovviiiiiien... 63

6.2.2 Sequential Arithmetics and Carry-Save Networks

(CONS) ettt 65
6.2.3 Optimized Building Blocksiiel, 67
6.2.4 Gate Level Minimization Techniques........................... 71
6.3 Experimental Evaluation......................oooi e 71
6.3.1 Benchmarked Functionalities and Their Parameters 72
6.3.2 Compiler Comparisonoovvviiiiiiiiiiiieinenennnnnnn.. 73
6.3.3 Evaluation of the Optimizations Techniques 74
6.3.4 Protocol Runtimeiiiii 75
7 Towards Scalable and Optimizing Compilation for MPC................ 79
7.1 Motivation and OVEIVIEWovvviriiieiiiiiie e eeeeaeaaaaaannns 79
7.2 Adapted Compilation Chain..................ooiiiiie ... 80
7.2.1 Compilation Architectureccoeviiiiiiiiiiiiiiennnennns 80
7.2.2 Global Constant Propagation............ccceevvviiiiiiinnnnnnnns 81
7.2.3 Implementationeeeviiiiiiiiiiiieiiiiieeeeeiieeeeeeenns 83
7.3 Experimental Evaluation....................ooooiiii 84
7.3.1 Description of EXperimentsccceevvviiiiiiiiiiennnnnnns 84
7.3.2 Compilation Resultsccooiiiiiiiiiiiiiiiiiiiiiiiiiin. 85
A CBMC-GCManual...........oooiiiiiiiiiiii i 87

Ref@renCeS. ...t 89

	Preface
	Contents

