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Preface

An ever-growing amount of data is processed by online services every day.
Unfortunately, data owners are at risk to lose control over their possibly sensitive
data once it is deployed at an untrusted third party. A solution to this dilemma is
Secure Multi-party Computation (MPC), which has emerged as a generic approach
to realize Privacy-Enhancing Technology in a cryptographically sound manner,
as it allows to perform arbitrary computations between two or more parties over
encrypted data. In recent years, numerous protocols and optimizations have made
MPC practical for relevant real world scenarios. This development has led to a
significant improvement in the performance and size of applications that can be
realized with MPC.

A major obstacle in the past was to generate MPC applications by hand. Recently
special compilers have been developed to build all kinds of applications. In this
book, we summarize our research on the compiler CBMC-GC for MPC over
Boolean circuits. We show and explain how efficient MPC applications can be
created automatically from ANSI-C, which bridges the areas of cryptography, com-
pilation and hardware synthesis. Moreover, we give an insight into the requirements
for creating efficient applications for MPC, and thus we hope that this work can be
of interest not only to researchers in the area of MPC but also developers realizing
practical applications with MPC.

The authors wish to thank Andreas Holzer, Martin Franz and Helmut Veith,
with whom we started the research on compilers for MPC. Moreover, we wish to
thank our students Alina Weber and David Kretzmer who contributed ideas and
implementations to the later parts of this book. This work has been co-funded by
the DFG as part of project S5 within the CRC 1119 “CROSSING” and by the DFG
within the RTG 2050 “Privacy and Trust for Mobile Users”.

Darmstadt, Germany Niklas Biischer
August 2017 Stefan Katzenbeisser
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