Skip to main content

Uncertainty Driven Multi-loss Fully Convolutional Networks for Histopathology

  • Conference paper
  • First Online:
Book cover Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2017, STENT 2017, CVII 2017)

Abstract

Different works have shown that the combination of multiple loss functions is beneficial when training deep neural networks for a variety of prediction tasks. Generally, such multi-loss approaches are implemented via a weighted multi-loss objective function in which each term encodes a different desired inference criterion. The importance of each term is often set using empirically tuned hyper-parameters. In this work, we analyze the importance of the relative weighting between the different terms of a multi-loss function and propose to leverage the model’s uncertainty with respect to each loss as an automatically learned weighting parameter. We consider the application of colon gland analysis from histopathology images for which various multi-loss functions have been proposed. We show improvements in classification and segmentation accuracy when using the proposed uncertainty driven multi-loss function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litjens , G., et al.: A survey on deep learning in medical image analysis. arXiv preprint arXiv:1702.05747 (2017)

  2. Chen, H., Qi, X., Yu, L., Heng, P.-A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  3. BenTaieb, A., Kawahara, J., Hamarneh, G.: Multi-loss convolutional networks for gland analysis in microscopy. In: IEEE 13th International Symposium on Biomedical Imaging, pp. 642–645 (2016)

    Google Scholar 

  4. BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_53

    Chapter  Google Scholar 

  5. Kawahara, J., Hamarneh, G.: Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 164–171. Springer, Cham (2016). doi:10.1007/978-3-319-47157-0_20

    Chapter  Google Scholar 

  6. Dai, W., et al.: Scan: structure correcting adversarial network for chest x-rays organ segmentation. arXiv preprint arXiv:1703.08770 (2017)

  7. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. arXiv preprint arXiv:1705.07115 (2017)

  8. Gal, Y.: Uncertainty in deep learning, Ph.D. dissertation (2016)

    Google Scholar 

  9. Saad, A., Möller, T., Hamarneh, G.: Probexplorer: uncertainty-guided exploration and editing of probabilistic medical image segmentation. Comput. Graph. Forum 29(3), 1113–1122 (2010). Wiley Online Library

    Article  Google Scholar 

  10. Marsland, S., Shardlow, T.: Langevin equations for landmark image registration with uncertainty. SIAM J. Imaging Sci. 10(2), 782–807 (2017)

    Article  MathSciNet  Google Scholar 

  11. Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 48–57. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_6

    Google Scholar 

  12. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  13. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  14. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the GlaS challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aïcha BenTaieb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

BenTaieb, A., Hamarneh, G. (2017). Uncertainty Driven Multi-loss Fully Convolutional Networks for Histopathology. In: Cardoso, M., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS STENT CVII 2017 2017 2017. Lecture Notes in Computer Science(), vol 10552. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67534-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67533-6

  • Online ISBN: 978-3-319-67534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics