Skip to main content

DCNN-Based Automatic Segmentation and Quantification of Aortic Thrombus Volume: Influence of the Training Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10552))

Abstract

Computerized Tomography Angiography (CTA) based assessment of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential during follow-up to evaluate the progress of the patient along time, comparing it to the pre-operative situation, and to detect complications. In this context, accurate assessment of the aneurysm or thrombus volume pre- and post-operatively is required. However, a quantifiable and trustworthy evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose an automatic pipeline for thrombus volume assessment, starting from its segmentation based on a Deep Convolutional Neural Network (DCNN) both pre-operatively and post-operatively. The aim is to investigate several training approaches to evaluate their influence in the thrombus volume characterization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pearce, W.H., Zarins, C.K., Bacharach, J.M.: Atherosclerotic peripheral vascular disease symposium II: controversies in abdominal aortic aneurysm repair. Circulation 118(25), 2860–2863 (2008)

    Article  Google Scholar 

  2. Moll, F.L., Powell, J.T., Fraedrich, G., Verzini, F., Haulon, S., Waltham, M., Ricco, J.B.: Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 41(1), 1–58 (2011)

    Article  Google Scholar 

  3. Stather, P.W., Sidloff, D., Dattani, N.: Systematic review and meta-analysis of the early and late outcomes of open and endovascular repair of abdominal aortic aneurysm. J. Vasc. Surg. 58(4), 1142 (2013)

    Article  Google Scholar 

  4. Renapurkar, R.D., Setser, R.M., O’Donnell, T.P., Egger, J., Lieber, M.L., Desai, M.Y., Stillman, A.E., Schoenhagen, P., Flamm, S.D.: Aortic volume as an indicator of disease progression in patients with untreated infrarenal abdominal aneurysm. Eur. J. Radiol. 81(2), 87–93 (2012)

    Article  Google Scholar 

  5. López-Linares, K., Aranjuelo, N., Kabongo, L., Maclair, G., Lete, N., Leskovsky, P., Garca-Familiar, A., Macía, I., González Ballester, M.A.: Fully automatic segmentation of abdominal aortic thrombus in post-operative CTA images using deep convolutional neural networks. Proc. Int. J. CARS 12(1), 29–30 (2017)

    Google Scholar 

  6. http://www3.gehealthcare.com/en/products/categories/advanced_visualization/applications/autobone_and_vesseliq_xpress

  7. https://www.vitalimages.com/clinicalapplications/tabs/ct-endovascular-stent-planning

  8. Duquette, A.A., Jodoin, P.M., Bouchot, O., Lalande, A.: 3D segmentation of abdominal aorta from CT-scan and MR images. Comput. Med. Imaging Graph. 36(4), 294–303 (2012)

    Article  Google Scholar 

  9. Egger, J., Freisleben, B., Setser, R., Renapuraar, R., Biermann, C., ODonnell, T.: Aorta segmentation for stent simulation. In: MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, p. 10 (2009)

    Google Scholar 

  10. Freiman, M., Esses, S.J., Joskowicz, L., Sosna, J.: An iterative model-constrained graph-cut algorithm for abdominal aortic aneurysm thrombus segmentation. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 672–675 (2010)

    Google Scholar 

  11. Maiora, J., Ayerdi, B., Graña, M.: Random forest active learning for AAA thrombus segmentation in computed tomography angiography images. Neurocomputing 126, 71–77 (2014)

    Article  Google Scholar 

  12. Macía, I., Legarreta, J.H., Paloc, C., Graña, M., Maiora, J., García, G., Blas, M.: Segmentation of abdominal aortic aneurysms in CT images using a radial model approach. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 664–671. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04394-9_81

    Chapter  Google Scholar 

  13. Demirci, S., Lejeune, G., Navab, N.: Hybrid deformable model for aneurysm segmentation. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 33–36 (2009)

    Google Scholar 

  14. Lalys, F., Yan, V., Kaladji, A., Lucas, A., Esneault, S.: Generic thrombus segmentation from pre- and post-operative CTA. Int. J. Comput. Assist. Radiol. Surg. 12(9), 1501–1510 (2017)

    Google Scholar 

  15. Hong, H., Sheikh, U.: Automatic detection, segmentation and classification of abdominal aortic aneurysm using deep learning. In: 2016 IEEE 12th International Colloquium on Signal Process Its Application, pp. 242–246 (2016)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Xie, S., Tu, Z.: Holistically-nested edge detection. CoRR abs/1504.06375 (2015)

    Google Scholar 

  18. Alyassin, A.M., Lancaster, J.L., Downs, J.H., Fox, P.T.: Evaluation of new algorithms for the interactive measurement of surface area and volume. Med Phys. 21(6), 741–752 (1994)

    Article  Google Scholar 

  19. Tustison, N., Gee, J.: Introducing dice, jaccard, and other label overlap measures to ITK. Insight J. (2009)

    Google Scholar 

  20. Chaikof, E., Blankensteijn, J., Harris, P., White, G., Zarins, C., et al.: Reporting standards for endovascular aortic aneurysm repair. J. Vasc. Surg. 35(5), 1048–1060 (2002)

    Article  Google Scholar 

  21. Parr, A., Jayaratne, C., Buttner, P., Golledge, J.: Comparison of volume and diameter measurement in assessing small abdominal aortic aneurysm expansion examined using computed tomographic angiography. Eur. J. Radiol. 79(1), 42–47 (2011)

    Article  Google Scholar 

  22. van Prehn, J., van der Wal, M.B., Vincken, K., Bartels, L.W., Moll, F.L., van Herwaarden, J.A.: Intra- and interobserver variability of aortic aneurysm volume measurement with fast CTA postprocessing software. J. Endovasc. Ther. 15(5), 504–510 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen López-Linares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

López-Linares, K. et al. (2017). DCNN-Based Automatic Segmentation and Quantification of Aortic Thrombus Volume: Influence of the Training Approach. In: Cardoso, M., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS STENT CVII 2017 2017 2017. Lecture Notes in Computer Science(), vol 10552. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67534-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67533-6

  • Online ISBN: 978-3-319-67534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics