Skip to main content

Vascular Segmentation in TOF MRA Images of the Brain Using a Deep Convolutional Neural Network

  • Conference paper
  • First Online:
Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2017, STENT 2017, CVII 2017)

Abstract

Cerebrovascular diseases are one of the main causes of death and disability in the world. Within this context, fast and accurate automatic cerebrovascular segmentation is important for clinicians and researchers to analyze the vessels of the brain, determine criteria of normality, and identify and study cerebrovascular diseases. Nevertheless, automatic segmentation is challenging due to the complex shape, inhomogeneous intensity, and inter-person variability of normal and malformed vessels. In this paper, a deep convolutional neural network (CNN) architecture is used to automatically segment the vessels of the brain in time-of-flight magnetic resonance angiography (TOF MRA) images of healthy subjects. Bi-dimensional manually annotated image patches are extracted in the axial, coronal, and sagittal directions and used as input for training the CNN. For segmentation, each voxel is individually analyzed using the trained CNN by considering the intensity values of neighboring voxels that belong to its patch. Experiments were performed with TOF MRA images of five healthy subjects, using varying numbers of images to train the CNN. Cross validations revealed that the proposed framework is able to segment the vessels with an average Dice coefficient ranging from 0.764 to 0.786 depending on the number of images used for training. In conclusion, the results of this work suggest that CNNs can be used to segment cerebrovascular structures with an accuracy similar to other high-level segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: The top 10 causes of death (2015)

    Google Scholar 

  2. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  3. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195

    Chapter  Google Scholar 

  4. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Grimson, E., Mösges, R. (eds.) CVRMed/MRCAS -1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997). doi:10.1007/BFb0029240

    Chapter  Google Scholar 

  5. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  7. Fu, H., Xu, Y., Wong, D.W.K., Liu, J.: Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: IEEE 13th International Symposium on Biomedical Imaging, pp. 698–701. IEEE (2016)

    Google Scholar 

  8. Smistad, E., Løvstakken, L.: Vessel detection in ultrasound images using deep convolutional neural networks. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 30–38. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_4

    Google Scholar 

  9. Kitrungrotsakul, T., Han, X.H., Iwamoto, Y., Foruzan, A.H., Lin, L., Chen, Y.W.: Robust hepatic vessel segmentation using multi deep convolution network. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp. 1013711–1013711 (2017)

    Google Scholar 

  10. Saloner, D.: The AAPM/RSNA physics tutorial for residents. an introduction to MR angiography. Radiographics 15(2), 453–465 (1995)

    Article  Google Scholar 

  11. Forkert, N., Fiehler, J., Suniaga, S., Wersching, H., Knecht, S., Kemmling, A., et al.: A statistical cerebroarterial atlas derived from 700 MRA datasets. Methods Inf. Med. 52(6), 467–474 (2013)

    Article  Google Scholar 

  12. Wu, A., Xu, Z., Gao, M., Buty, M., Mollura, D.J.: Deep vessel tracking: a generalized probabilistic approach via deep learning. In: IEEE 13th International Symposium on Biomedical Imaging, pp. 1363–1367. IEEE (2016)

    Google Scholar 

  13. Kholmovski, E.G., Alexander, A.L., Parker, D.L.: Correction of slab boundary artifact using histogram matching. J. Magn. Reson. Imaging 15(5), 610–617 (2002)

    Article  Google Scholar 

  14. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  15. Forkert, N., Säring, D., Fiehler, J., Illies, T., Möller, D., Handels, H., et al.: Automatic brain segmentation in time-of-flight MRA images. Methods Inf. Med. 48(5), 399–407 (2009)

    Article  Google Scholar 

  16. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  17. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math compiler in Python. In: Proceedings of the 9th Python in Science Conference, pp. 1–7 (2010)

    Google Scholar 

  18. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.: cuDNN: efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)

Download references

Acknowledgement

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC). Dr. Alexandre X. Falcão and MSc. Alan Peixinho thank CNPq 302970/2014-2 and FAPESP 2014/12236-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Phellan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Phellan, R., Peixinho, A., Falcão, A., Forkert, N.D. (2017). Vascular Segmentation in TOF MRA Images of the Brain Using a Deep Convolutional Neural Network. In: Cardoso, M., et al. Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS STENT CVII 2017 2017 2017. Lecture Notes in Computer Science(), vol 10552. Springer, Cham. https://doi.org/10.1007/978-3-319-67534-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67534-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67533-6

  • Online ISBN: 978-3-319-67534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics