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Abstract. A distributed Nash equilibrium seeking algorithm is pre-
sented for networked games. We assume an incomplete information avail-
able to each player about the other players’ actions. The players commu-
nicate over a strongly connected digraph to send/receive the estimates
of the other players’ actions to/from the other local players according
to a gossip communication protocol. Due to asymmetric information ex-
change between the players, a non-doubly (row) stochastic weight matrix
is defined. We show that, due to the non-doubly stochastic property, the
total average of all players’ estimates is not preserved for the next it-
eration which results in having no exact convergence. We present an
almost sure convergence proof of the algorithm to a Nash equilibrium of
the game. Then, we extend the algorithm for graphical games in which
all players’ cost functions are only dependent on the local neighboring
players over an interference digraph. We design an assumption on the
communication digraph such that the players are able to update all the
estimates of the players who interfere with their cost functions. It is
shown that the communication digraph needs to be a superset of a tran-
sitive reduction of the interference digraph. Finally, we verify the efficacy
of the algorithm via a simulation on a social media behavioral case.

1 Introduction

The problem of finding a Nash equilibrium (NE) of a networked game has re-
cently drawn many attentions. The players who participate in this game aim to
minimize their own cost functions selfishly by making decision in response to
other players’ actions. Each player in the network has only access to local infor-
mation of the neighbors. Due to the imperfect information available to players,
they maintain an estimate of the other players’ actions and communicate over a
communication graph in order to exchange the estimates with local neighbors.
Using this information, players update their actions and estimates.

In many algorithms in the context of NE seeking problems, it is assumed
that the communications between the players are symmetric in the sense that
the players who are in communication can exchange their information altogether
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and update their estimates at the same time. This, in general, leads to a dou-
bly stochastic communication weight matrix which preserves the global average
of the estimates over time. However, there are many real-world applications in
which symmetric communication is not of interest or may be an undesired fea-
ture in applications such as sensor network.
Literature review. Our work is related to the literature on Nash games and dis-
tributed NE seeking algorithms [1, 17, 4, 11, 16]. A distributed algorithm is
proposed in [18] to compute a generalized NE of the game for a complete com-
munication graph. In [7], an algorithm is provided to find an NE of aggregative
games for a partial communication graph but complete interference graph. This
algorithm is extended by [13] for a more general class of games in which the
players’ cost functions are not necessarily dependent on the aggregate of the
players’ actions. It is further generalized to the case with partial interference
graph in [14]. For a two-network zero-sum game [5] considers a distributed algo-
rithm for NE seeking. To find distributed algorithms for games with local-agent
utility functions, a methodology is presented in [8] based on state-based potential
games.

Gossip-based communication has been widely used in synchronous and asyn-
chronous algorithms in consensus and distributed optimization problems [9, 2, 3].
In [9], a gossip algorithm is designed for a distributed broadcast-based optimiza-
tion problem. An almost-sure convergence is provided due to the non-doubly
stochasticity of the communication matrix. In [2], a broadcast gossip algorithm
is studied to compute the average of the initial measurements which is proved
to converge almost surely to a consensus.
Contributions. We propose an asynchronous gossip-based algorithm to find an
NE of a distributed game over a communication digraph. We assume that play-
ers send/receive information to/from their local out/in-neighbors over a strongly
connected communication digraph. Players update their own actions and esti-
mates based on the received information. We prove an almost sure convergence
of the algorithm to the NE of the game. Unlike in the undirected case [13, 14],
herein we cannot exploit the doubly stochastic property for the communication
weight matrix due to asymmetric information exchange. Non-doubly stochastic
property leads to have total average of the players’ estimates not preserved over
time. This was one of the critical steps in the convergence proof in [13, 14].

Moreover, we extend the algorithm for graphical games in which the players’
cost functions may be interfered by any subset of players’ (not necessarily all
the players’) actions. The locality of cost functions is specified by an interference
digraph which marks the pair of players who interfere one with another. In order
to have a convergent algorithm, we design an assumption on the communication
digraph by which there exists a lower bound on the communication digraph
which is a transitive reduction of the interference digraph. By this assumption,
it is proved that all the players are able to exchange and update all the estimates
of the actions interfering with their cost functions.

The paper is organized as follows. In Section II, the problem statement and
assumptions are provided for the game with a complete interference digraph. An
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asynchronous gossip-based algorithm is proposed in Section III. In Section IV,
convergence of the algorithm with diminishing step sizes is discussed. In Sections
V and VI, the problem statement and the proposed algorithm for the game with
a partial interference digraph are investigated, respectively and its convergence
to an NE of the game is proved in Section VII. Simulation results are presented
in Section VIII and concluding remarks are provided in Section IX.

2 Problem Statement: Game With a Complete
Interference Digraph

Consider a multi-player game in a network with a set of players V . The inter-
ference of players’ actions on the cost functions is represented by a complete
interference digraph G(V,E), with E marking the pair of players that interfere
one with another. Note that for a complete digraph every pair of distinct nodes
is connected by a pair of unique edges (one in each direction).

The game is denoted by G(V,Ωi, Ji) and defined over

– V = {1, . . . , N}: Set of players,
– Ωi ⊂ R: Action set of player i, ∀i ∈ V with Ω =

∏
i∈V Ωi ⊂ RN the action

set of all players,
– Ji : Ω → R: Cost function of player i, ∀i ∈ V ,

In the following we define a few notations for players’ actions.

– x = (xi, x−i) ∈ Ω: All players actions,
– xi ∈ Ωi: Player i’s action, ∀i ∈ V ,
– x−i ∈ Ω−i :=

∏
j∈V \{i}Ωj : All other players’ actions except i.

The game is defined as a set of N simultaneous optimization problems as follows:{
minimize

yi
Ji(yi, x−i)

subject to yi ∈ Ωi
∀i ∈ V. (1)

Each problem is run by an individual player and its solution is dependent on the
solution of the other problems.

The objective is to find an NE of this game which is defined as follows:

Definition 1. Consider an N -player game G(V,Ωi, Ji), each player i minimiz-
ing the cost function Ji : Ω → R. A vector x∗ = (x∗i , x

∗
−i) ∈ Ω is called an NE

of this game if

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i) ∀xi ∈ Ωi, ∀i ∈ V. (2)

Note that for game (1), the NE lies in the intersection of the solutions of the
optimization problems. We state a few assumptions for the existence and the
uniqueness of an NE.

Assumption 1. For every i ∈ V ,
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– Ωi is non-empty, compact and convex,
– Ji(xi, x−i) is C1 in xi and continuous in x,
– Ji(xi, x−i) is convex in xi for every x−i.

The compactness of Ω implies that ∀i ∈ V and x ∈ Ω,

‖∇xi
Ji(x)‖ ≤ C, for some C > 0. (3)

Let F : Ω → RN , F (x) := [∇xi
Ji(x)]i∈V be the pseudo-gradient vector of the

cost functions (game map).

Assumption 2. F is strictly monotone,

(F (x)− F (y))T (x− y) > 0 ∀x, y ∈ Ω, x 6= y.

Assumption 3. ∇xiJi(xi, u) is Lipschitz continuous in xi, for every fixed u ∈
Ω−i and for every i ∈ V , i.e., there exists σi > 0 such that

‖∇xi
Ji(xi, u)−∇xi

Ji(yi, u)‖ ≤ σi‖xi − yi‖ ∀xi, yi ∈ Ωi.

Moreover, ∇xi
Ji(xi, u) is Lipschitz continuous in u with a Lipschitz constant

Li > 0 for every fixed xi ∈ Ωi, ∀i ∈ V .

Remark 1. Assumption 3 implies that ∇xi
Ji(x) and F (x) are Lipschitz contin-

uous in x ∈ Ω with Lipschitz constants ρi =
√

2L2
i + 2σ2

i and ρ =
√∑

i∈V ρ
2
i ,

respectively for every i ∈ V .

In game (1), the only information available to each player i is Ji and Ω.
Thus, each player maintains an estimate of the other players actions and ex-
changes those estimates with the local neighbors to update them. A commu-
nication digraph GC(V,EC) is defined where EC ⊆ V × V denotes the set of
communication links between the players. (i, j) ∈ EC if and only if player i
sends his information to player j. Note that (i, j) ∈ EC does not necessarily
imply (j, i) ∈ EC . The set of in-neighbors of player i in GC , denoted by N in

C (i),
is defined as N in

C (i) := {j ∈ V |(j, i) ∈ EC}. The following assumption on GC is
used.

Assumption 4. GC is strongly connected.

A digraph is called strongly connected if there exists a path between each
ordered pair of vertices of the digraph.

Our objective is to find an algorithm for computing an NE of G(V,Ωi, Ji)
using only imperfect information over the communication digraph GC(V,EC).

3 Asynchronous Gossip-based Algorithm

We propose a projected gradient-based algorithm using an asynchronous gossip-
based method as in [13]. The algorithm can be briefly explained as follows:



Nash Equilibrium Seeking 5

– Each player maintains a temporary estimate of all players’ actions.
– They receive information from the local neighbors over GC to update their

temporary estimates.
– Then, they solve their own optimization problems using their final estimates

and update their actions.

The algorithm is inspired by [13] except that the communications are supposed
to be directed in a sense that the information exchange is considered over a
directed path. Our challenge here is to deal with the asymmetric communications
between the players. This makes the convergence proof dependent on a non-
doubly stochastic weight matrix , whose properties need to be investigated and
proved. In many cases e.g. sensor networks, symmetric communication may not
be of interest and could be an undesirable feature.

The algorithm is elaborated as follows:
1- Initialization Step: Each player i maintains an initial temporary estimate
x̃i(0) ∈ Ω for all players. Let x̃ij(0) ∈ Ωj ⊂ R be player i’s initial temporary
estimate of player j’s action, for i, j ∈ V .
2- Gossiping Step: At iteration k, player ik becomes active uniformly at ran-
dom and selects a communication in-neighbor indexed by jk ∈ N in

C (ik) uniformly
at random. Let x̃i(k) ∈ Ω ⊂ RN be player i’s temporary estimate at iteration
k. Then player jk sends his temporary estimate x̃jk(k) to player ik. After re-
ceiving the information, player ik constructs his final estimate of all players. Let
x̂ij(k) ∈ Ωj ⊂ R be player i’s final estimate of player j’s action, for i, j ∈ V . The
final estimates are computed as in the following:

1. Players ik’s final estimate:x̂
ik
ik

(k) = x̃ikik(k)

x̂ik−ik(k) =
x̃
ik
−ik

(k)+x̃
jk
−ik

(k)

2 .
(4)

Note that x̃ii(k) = xi(k) for all i ∈ V , since no estimate is needed for the
players’ own actions.

2. For all other players i 6= ik, the temporary estimate is maintained, i.e.,

x̂i(k) = x̃i(k), ∀i 6= ik. (5)

We use communication weight matrix W (k) := [wij(k)]i,j∈V to obtain a
compact form of the gossip protocol. W (k) is a non-doubly (row) stochastic
weight matrix defined as follows:

W (k) = IN −
eik(eik − ejk)T

2
, (6)

where ei ∈ RN is a unit vector. Note that W (k) is different from the one used
in [13]. The non-doubly (row) stochasticity of W (k) is translated into:

W (k)1N = 1N , 1TNW (k) 6= 1TN . (7)
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Let x̄(k) = [x̄1(k), . . . , x̄N (k)]T ∈ ΩN be an intermediary variable such that

x̄(k) = (W (k)⊗ IN )x̃(k), (8)

where x̃(k) = [x̃1(k), . . . , x̃N (k)]T ∈ ΩN is the overall temporary estimate at k.
Using (6) one can combine (4) and (5) in a compact form of x̂ik−ik(k) = x̄ik−ik(k)

and x̂i(k) = x̄i(k) for ∀i 6= ik.
3- Local Step

At this moment all the players update their actions according to a projected
gradient-based method. Let x̄i = (x̄ii, x̄

i
−i) ∈ Ω, ∀i ∈ V with x̄ii ∈ Ωi be the

intermediary variable associated to player i. Because of imperfect information
available to player i, he uses x̄i−i(k) and updates his action as follows: if i = ik,

xi(k + 1) = TΩi [xi(k)− αk,i∇xiJi(xi(k), x̄i−i(k))], (9)

otherwise, xi(k + 1) = xi(k). In (9), TΩi
: R → Ωi is an Euclidean projection

and αk,i are diminishing step sizes such that

∞∑
k=1

α2
k,i <∞,

∞∑
k=1

αk,i =∞ ∀i ∈ V. (10)

Note that αk,i is inversely related to the number of updates νk(i) that each
player i has made until time k (i.e., αk,i = 1

νk(i)
). In (9), the players who are

not involved in communication at iteration k maintain their actions unchanged.
At this moment the updated actions are available for players to update their
temporary estimates for every i ∈ V as follows:

x̃i(k + 1) = x̄i(k) + (xi(k + 1)− x̄ii(k))ei, ∀i ∈ V. (11)

At this point, the players are ready to begin a new iteration from step 2.

Algorithm 1

1: initialization x̃i(0) ∈ Ω ∀i ∈ V
2: for k = 1, 2, . . . do
3: ik ∈ V and jk ∈ N in

C (ik) communicate.

4: W (k) = IN −
eik (eik−ejk )

T

2 .
5: x̄(k) = (W (k)⊗ IN )x̃(k).
6: xik(k+1)=TΩik

[xik(k)−αk,ik∇xiJik(xik(k),x̄ik−ik(k))],
xi(k + 1) = xi(k), if i 6= ik.

7: x̃i(k + 1) = x̄i(k) + (xi(k + 1)− x̄ii(k))ei, ∀i ∈ V .
8: end for

Now we elaborate on the non-doubly stochastic property of W (k) from two
perspectives.
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1. Design: By the row (non-doubly) stochastic property of W (k), the tempo-
rary estimates remain at consensus subspace once they reach there. This can
be verified by (8) when x̃(k) = 1N ⊗α for an N × 1 vector α, since,

x̄(k) = (W (k)⊗ IN )(1N ⊗α) = 1N ⊗α. (12)

Equation (12) along with (9) and (11) imply that the consensus is main-
tained. On the other hand W (k) is not a column-stochastic matrix which is
a critical property used in [13]. This implies that the average of temporary
estimates is not equal to the average of x̄. Indeed by (8),

1

N
(1TN ⊗ IN )x̄(k) =

1

N
(1TN ⊗ IN )(W (k)⊗ IN )x̃(k) 6= 1

N
(1TN ⊗ IN )x̃(k).(13)

Equation (13) along with (9) and (11) imply that the average of temporary
estimates is not preserved for the next iteration. Thus, it seems infeasible to
obtain an exact convergence toward the average consensus [2] . Instead we
show an almost sure (a.s.) convergence1 of the temporary estimates toward
an average consensus2.

2. Convergence Proof : λmax(W (k)TW (k)) is a key parameter in the conver-
gence proof (as in [9, 13]). Unlike [13], the non-doubly stochastic property
of W (k)TW (k) ends up in having λmax(W (k)TW (k)) > 1. We resolve this
issue in Lemma 2.

4 Convergence For Diminishing Step Sizes

In this section we prove convergence of the algorithm for diminishing step sizes
as in (10).

Consider a memory in which the history of the decision making is recorded.
Let Mk denote the sigma-field generated by the history up to time k − 1 with
M0 = {x̃i(0), i ∈ V }.

Mk =M0 ∪
{

(il, jl); 1 ≤ l ≤ k − 1
}
, ∀k ≥ 2. (14)

In the proof we use a well-known result on super martingale convergence,
(Lemma 11, Chapter 2.2, [12]).

Lemma 1. Let Vk, uk, βk and ζk be non-negative random variables adapted to
σ-algebra Mk. If

∑∞
k=0 uk < ∞ a.s.,

∑∞
k=0 βk < ∞ a.s., and E[Vk+1|Mk] ≤

(1 +uk)Vk− ζk +βk a.s. for all k ≥ 0, then Vk converges a.s. and
∑∞
k=0 ζk <∞

a.s.
1 Almost sure convergence: Random variables converge with probability 1.
2 The same objective is followed by [9] to find a broadcast gossip algorithm (with non-

doubly stochastic weight matrix) in the area of distributed optimization. However,
in the proof of Lemma 2 ([9] page 1348) which is mainly dedicated to this discussion,
the doubly stochasticity of W (k) is used right after equation (22) which violates the
main assumption on W (k).
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As explained in the design challenge in Section 3, we consider a.s. conver-
gence. Convergence is shown in two parts. First, we prove a.s. convergence of
the temporary estimate vectors x̃i, to an average consensus, proved to be the
vectors’ average. Then we prove a.s. convergence of players’ actions toward an
NE.

Let x̃(k) be the overall temporary estimate vector. The average of all tem-
porary estimates at T (k) is defined as follows:

Z(k) =
1

N
(1TN ⊗ IN )x̃(k). (15)

As mentioned in Section 3, the major difference between the proposed algorithm
and the one in [13] is in using a non-doubly stochastic weight matrix W (k) which
was a key step. The following lemma is used to overcome these challenges.

Lemma 2. Let Q(k) = (W (k)− 1
N 1N1TNW (k))⊗ IN and W (k) be a non-doubly

(row) stochastic weight matrix defined in (6) which satisfies (7). Let also γ =
λmax

(
E[Q(k)TQ(k)]

)
. Then γ < 1.

Proof . Consider the variational characterization of γ. Since E[Q(k)TQ(k)] is
an N2 ×N2 symmetric matrix, we can write,

γ = sup
x∈RN2 ,‖x‖=1

xTE[Q(k)TQ(k)]x ≥ 0. (16)

Due to space limitation we drop the constraints of sup(·). By the definition of
Q(k), we obtain,

γ=sup
x
xTE

[(
W (k)TW (k)− 1

N
W (k)T1N1TNW (k)

)
⊗IN

]
x.

Using (6), we expand γ as follows:

γ = sup
x
xTE

[{(
IN −

1

4N
(eik − ejk)(eik − ejk)T︸ ︷︷ ︸

Term 1

)

−
( 1

N
1N1TN +

1

2
(eik −

1

N
1N )(eik − ejk)T +

1

2
(eik − ejk)(eik −

1

N
1N )T︸ ︷︷ ︸

Term 2

−1

4
(eik − ejk)(eik − ejk)T︸ ︷︷ ︸

Term 2

)}
⊗ IN

]
x. (17)

Note that E[(Term 1− Term 2)⊗ IN ] is a symmetric matrix.

Claim 1: For all x ∈ RN2

, ‖x‖ = 1, we have, xTE
[
Term 1 ⊗ IN

]
x ≤ 1. The

equality only holds for x = 1N ⊗ y where y ∈ RN and ‖y‖ = 1√
N

.

Proof of Claim 1: Multiplying xT and x into the argument of the expected
value in (17) and using ‖x‖ = 1, we obtain,
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xTE
[
Term 1⊗ IN

]
x = 1− 1

4N
E
[∥∥∥((eik − ejk)T ⊗ IN

)
x
∥∥∥2] ≤ 1. (18)

The equality holds only when,

E
[∥∥∥((eik − ejk)T ⊗ IN

)
x
∥∥∥2] = 0⇔

∥∥∥((eik − ejk)T ⊗ IN
)
x
∥∥∥2 = 0⇔

(eTik ⊗ IN )x = (eTjk ⊗ IN )x. (19)

Equation (19) holds for all k ≥ 0, ik ∈ V and jk ∈ N in
C (ik). By the strong connec-

tivity of GC (Assumption 4), (19) becomes (eTi ⊗IN )x = (eTj ⊗IN )x, ∀i, j ∈ V
which implies that x = 1N ⊗ y where y ∈ RN . Moreover, ‖x‖ = 1 yields,

‖1N ⊗ y‖2 = 1⇔ (1TN ⊗ yT )(1N ⊗ y) = 1⇔ ‖y‖ =
1√
N
.

Claim 2: For x = (1N ⊗ y) ∈ RN2

where y ∈ RN and ‖y‖ = 1√
N

we have

xTE
[
Term 2⊗ IN

]
x > 0.

Proof of Claim 2: For x = 1N ⊗ y and ‖y‖ = 1√
N

we obtain by the mixed

product property of Kronecker that,

xTE
[
Term 2⊗IN

]
x=E

[
(1TN⊗yT )(Term 2⊗ IN )(1N ⊗ y)

]
= E

[(
1TN (Term 2)1N

)
⊗ yT y

]
. (20)

It is straightforward to verify that 1TN (Term 2)1N = N because all the sum-
mands in Term 2 except the first one vanish by multiplying 1TN and 1N . Having

that yT y = 1
N , (20) implies xTE

[
Term 2 ⊗ IN

]
x = 1 > 0. By Claims 1, 2 and

using the fact that Terms 1, 2 are symmetric and γ ≥ 0, (17) implies that γ < 1.
�

We use Lemmas 1, 2 to show x̃(k) converges a.s. to Z(k).

Theorem 1. Let x̃(k) be the stack vector with all temporary estimates of the
players and Z(k) be its average as in (15). Let also αk,max =maxi∈V αk,i. Then
under Assumptions 1,4, the following hold.

i)
∑∞
k=0 αk,max‖x̃(k)− (1N ⊗ IN )Z(k)‖ <∞ a.s.,

ii)
∑∞
k=0 ‖x̃(k)− (1N ⊗ IN )Z(k)‖2 <∞ a.s.

Proof . The proof follows as in the proof of Theorem 1 in [13], but the critical
step here is in using Lemma 2.

Theorem 1 yields the following corollary for x(k) and x̄(k).

Corollary 1. For the players’ actions x(k) and x̄(k), the following terms hold
a.s. under Assumptions 4-1.
i)
∑∞
k=0 αk,max‖x(k)− Z(k)‖ <∞ a.s., ii)

∑∞
k=0 ‖x(k)− Z(k)‖2 <∞ a.s.,

iii)
∑∞
k=0 E

[
‖x̄(k)− (1N ⊗ IN )Z(k)‖2

∣∣∣Mk

]
<∞ a.s.
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Proof . The proof follows directly from Theorem 1 noting that x(k) =
[x̃ii(k)]i∈V and x̄(k) = (W (k)⊗ IN )x̃(k) (8).

Theorem 2. Let x(k) and x∗ be the players’ actions and the NE of G, respec-
tively. Under Assumptions 4-3, the sequence {x(k)} generated by the algorithm
converges to x∗, almost surely.

Proof . The proof is similar to the proof of Theorem 2 in [13] based on The-
orem 1.

Theorem 2 verifies that the actions of the players converge a.s. toward the NE
using the fact that the actions converge to a consensus subspace (Corollary 1).

5 Game With a Partial Interference Digraph

We extend the game defined in Section 2 to the case with partially coupled cost
functions, in the sense that the cost functions may be affected by the actions of
any subset of players. The game is denoted by G(V,GI , Ωi, Ji) where GI(V,EI)
is an interference digraph with EI marking the players whose actions interfere
the other players’ cost functions, e.g.,

3

1

2

4

GI

J1(x4)

J2(x1)

J3(x2)

J4(x3)

We also denote by N in
I (i) := {j ∈ V |(j, i) ∈ EI}, the set of in-neighbors of

player i in GI whose actions affect Ji and Ñ in
I (i) := N in

I (i) ∪ {i}.
The following assumption is considered for GI .

Assumption 5. GI is strongly connected.

The cost function of player i, Ji, ∀i ∈ V , is defined over Ωi → R where

Ωi =
∏
j∈Ñ in

I (i)Ωj ⊂ R|Ñ in
I (i)| is the action set of players interfering with the

cost function of player i.
A few notations for players’ actions are given:

– xi = (xi, x
i
−i) ∈ Ωi: All players’ actions which interfere with Ji,

– xi−i ∈ Ωi−i :=
∏
j∈N in

I (i)Ωj : Other players’ actions which interfere with Ji.

Given xi−i, each player i aims to minimize his own cost function selfishly,{
minimize

yi
Ji(yi, x

i
−i)

subject to yi ∈ Ωi
∀i ∈ V. (21)

Known parameters to player i are as follows: 1) Cost function of player i,
Ji and 2) Action set Ωi. Note that this game setup is similar to the one in [14]
except for a directed GC used for asymmetric communications.
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A restatement of an NE definition (Definition 1) adapted to the interference
digraph GI is defined as follows:

Definition 2. Consider an N -player game G(V,GI , Ωi, Ji), each player i mini-
mizing the cost function Ji : Ωi → R. A vector x∗ = (x∗i , x

∗
−i) ∈ Ω is called an

NE of this game if for every given xi∗−i ∈ Ωi−i

Ji(x
∗
i , x

i∗
−i) ≤ Ji(xi, xi∗−i) ∀xi ∈ Ωi, ∀i ∈ V. (22)

Our first objective is to design an assumption on GC such that all required
information is communicated by the players after sufficiently many iterations.
In other words, we ensure that player i, ∀i ∈ V receives information from all the
players whose actions interfere with his cost function.

Definition 3. Transitive reduction: A digraph H is a transitive reduction of G
which is obtained as follows: for all three vertices i, j, l in G such that edges (i, j),
(j, l) are in G, (i, l) is removed from G.

In simple terms, a transitive reduction of a digraph is a digraph without the
parallel paths between the vertices.

Remark 2. Transitive reduction is different from the notion of maximal triangle-
free spanning subgraph, which is used in Assumption 2 in [14].

Assumption 6. The following holds for the communication graph GC :

– GTR ⊆ GC ⊆ GI , where GTR is a transitive reduction of GI .

Remark 3. GC is strongly connected because it is a superset of the transitive
reduction of GI . Note that the transitive reduction preserves the strong connec-
tivity of a digraph by removing only the parallel paths.

Lemma 3. Let GI and GC satisfying Assumptions 5, 6. Then,∀i ∈ V ,⋃
j∈N in

C (i)

(
N in
I (i) ∩ Ñ in

I (j)
)

= N in
I (i). (23)

Proof . The proof is similar to the proof of Lemma 2 in [15], but modified to
adapt for the directed graph. We need to show N in

I (i) ⊆
⋃
j∈N in

C (i) Ñ
in
I (j) ∀i ∈ V

from which it is straightforward to deduce (23).
For the case when GC = GI , we obtain,⋃

j∈N in
C (i)

Ñ in
I (j)=

⋃
j∈N in

I (i)

Ñ in
I (j)⊇

⋃
j∈N in

I (i)

{j}=N in
I (i). (24)

In (24), we used {j} ⊆ Ñ in
I (j) by the definition of Ñ in

I (j).
Now assume that GTR ⊆ GC ⊂ GI . To prove (23), it is sufficient to show that

N in
I (i) ⊆

⋃
j∈N in

TR(i) Ñ
in
TR(j), where N in

TR(i) is the set of in-neighbors of player i

in GTR and Ñ in
TR(i) in addition to N in

TR(i) contains {i}. In other words we need
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to show that any in-neighbor of player i (any vertex with an incoming edge to i)
in GI is either an in-neighbor or “in-neighbor of an in-neighbor” of player i (a
vertex with an incoming path of at most length 2 to i) in GTR. If an incoming
edge to i exists both in GI and GTR, the corresponding in-neighbor of i in GI is
an in-neighbor of i in GTR. Otherwise, if there exists an incoming edge to i in GI
that is missing in GTR, according to Definition 3, there exists a directed path of
length 2 parallel to the missing edge in GTR. So the corresponding in-neighbor
of player i in GI is an in-neighbor of an in-neighbor of player i in GTR. �

Remark 4. Lemma 3 verifies that if GI and GC satisfy Assumptions 5, 6, then
player i ∈ V exchanges all of the estimates of the players’ actions which interfere
with his cost function after enough number of communications (see equation (4)).

The assumptions for existence and uniqueness of an NE are Assumptions 1-3
with the cost functions adapeted to GI .

Our second objective is to find an algorithm for computing an NE of
G(V,GI , Ωi, Ji) with partially coupled cost functions as described by the di-
rected graph GI(V,EI) using only imperfect information over GC(V,EC).

6 Asynchronous Gossip-based Algorithm adapted to GI

The structure of the algorithm is similar to the one in Section 3. The steps are
elaborated in the following:
1- Initialization Step:

– x̃i(0) ∈ Ωi: Player i’s initial temporary estimate.

2- Gossiping Step:

– x̃ij(k) ∈ Ωj ⊂ R: Player i’s temporary estimate of player j’s action at iteration
k.

– x̂ij(k) ∈ Ωj ⊂ R: Player i’s final estimate of player j’s action at iteration k,

for i ∈ V, j ∈ Ñ in
I (i).

– Final estimate construction:

x̂ikl (k) =

{
x̃
ik
l (k)+x̃

jk
l (k)

2 , l ∈ (N in
I (ik) ∩ Ñ in

I (jk))

x̃ikl (k), l ∈ Ñ in
I (ik)\(N in

I (ik) ∩ Ñ in
I (jk)).

(25)

For i ∈ V, j ∈ Ñ in
I (i),

x̂ij(k) = x̃ij(k), ∀i 6= ik, ∀j ∈ Ñ in
I (i). (26)

We suggest a compact form of gossip protocol by using a communication weight
matrix W I(k). Let for player i,

– min
i := deginGI

(i) + 1, where deginGI
(i) is the in-degree of vertex i ∈ V in GI ,

– m :=
∑N
i=1m

in
i ,
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– B = [bij ]i,j∈V where bij = 1 if j ∈ Ñ in
I (i) and bij = 0, otherwise.

– sij :=
∑j
l=1B(i, l) + δi6=1

∑i−1
r=1m

in
r , where δi 6=1 = 1 if i 6= 1 and δi 6=1 = 0,

otherwise.

– W I(k) := Im −
∑
l∈(Ñ in

I (ik)∩Ñ in
I (jk))

esikl
(esikl

−esjkl
)T

2 , (27)

where ei ∈ Rm is a unit vector. Note that W I(k) is different from the doubly
stochastic one used in [14].

– x̃(k) :=
[
x̃1

T

, . . . , x̃N
T ]T

: Stack vector of all temporary estimates of the play-
ers,

– x̄(k) := W I(k)x̃(k): Intermediary variable.

Using the intermediary variable, one can construct the final estimates as follows:

x̂i−i(k) = [x̄sij (k)]j∈N in
I (i). (28)

3- Local Step: Player i updates his action as follows:
If i = ik,

xi(k + 1)=TΩi

[
xi(k)−αk,i∇xiJi

(
xi(k),[x̄sij (k)]j∈N in

I (i)

)]
,

otherwise,
xi(k + 1) = xi(k), (29)

where TΩi
: R→ Ωi is an Euclidean projection and αk,i is defined as in (10).

At this moment the updated actions are available for players to update their
temporary estimates for every i ∈ V, j ∈ Ñ in

I (i) as follows:

x̃ij(k + 1) =

{
x̄sij (k), if j 6= i

xi(k + 1), if j = i.
(30)

At this point, the players are ready to begin a new iteration from step 2.

Algorithm 2

1: initialization x̃i(0) ∈ Ωi ∀i ∈ V
2: for k = 1, 2, . . . do
3: ik ∈ V and jk ∈ N in

C (ik) communicate.

4: W I(k) :=Im−
∑
l∈(Ñ in

I (ik)∩Ñ in
I (jk))

esikl
(esikl

−esjkl
)T

2 .

5: x̄(k) = W I(k)x̃(k).
6: xi(k+1)=TΩi [xi(k)−αk,i∇xiJi(xi(k),[x̄sij (k)]j∈N in

I (i))] if i = ik, xi(k+ 1) =

xi(k), otherwise.
7: x̃i(k + 1) = x̄i(k) + (xi(k + 1)− x̄ii(k))ei, ∀i ∈ V .
8: end for
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7 Convergence of the algorithm adapted to GI

Similar to Section 4, the convergence proof is split into two steps:

1. First, we prove almost sure convergence of x̃(k) ⊂ Rm to an average consen-
sus which is shown to be the augmented average of all temporary estimate
vectors. Let
– mout

i := degoutGI
(i) + 1, where degoutGI

(i) is the out-degree of vertex i ∈ V in
GI ,

– 1./mout := [ 1
mout

1
, . . . , 1

mout
N

]T ,

– H := [
∑
i:1∈N in

I (i) esi1 , . . . ,
∑
i:N∈N in

I (i) esiN ] ∈ Rm×N , (31)

where i : j ∈ N in
I (i) is all i’s such that j ∈ N in

I (i).
The augmented average of all temporary estimates is denoted by ZI(k) ∈ Rm
and defined as follows:

ZI(k) := Hdiag(1./mout)HT x̃(k) ∈ Rm. (32)

2. Secondly, we prove almost sure convergence of the players actions toward
the NE.

The convergence proof depends on some key properties of W I and H given in
Lemmas 4, 5.

Lemma 4. Let W I(k) and H be defined in (27) and (31). Then, W I(k)H = H.
Note that this can be interpreted as the generalized row stochastic property of
W I(k).

Proof . The proof is similar to the proof of Lemma 3 in [15] adapted for the
different W I here. Using the definitions of H and W I(k) (31), (27), we expand
W I(k)H as

W I(k)H = H − 1

2

∑
l∈(Ñ in

I (ik)∩Ñ in
I (jk))

esikl

.

[ ∑
i:1∈N in

I (i)

(esikl
− esjkl

)T esi1 , . . . ,
∑

i:N∈N in
I (i)

(esikl
− esjkl

)T esiN

]
, (33)

Note that
∑
i:j∈N in

I (i)(esikl
− esjkl

)T esij = 0 for all j ∈ V because eTsikl
esij = 1

for i = ik, j = l and eTsikl
esij = 0, otherwise. Similarly, eTsjkl

esij = 1 for i = jk,

j = l and eTsikl
esij = 0, otherwise. This completes the proof. �

Note that the generalized non-doubly stochasticity of W I(k) is translated
into HTW I(k) 6= HT .

Lemma 5. Let QI(k) :=W I(k)−Hdiag(1./mout)HTW I(k) and
γI = λmax

(
E[QI(k)TQI(k)]

)
. Then γI < 1.
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Proof . As suggested in (16), we employ the variational characterization of γ.
Then,

γI = sup
x∈Rm,‖x‖=1

xTE[QI(k)TQI(k)]x

= sup
x∈Rm,‖x‖=1

xTE
[(
W I(k)T −W I(k)THdiag(1./moutHT )

)
.
(
W I(k)−Hdiag(1./mout)HTW I(k)

)]
= sup
x∈Rm,‖x‖=1

xTE
[(
W I(k)TW I(k)−W I(k)THdiag(1./mout)HTW I(k)

)]
.(34)

For the last equality, we used HTH = diag(mout) which is straightforward to
verify. We expand γI and split the terms as follows (Let l ∈ Ñ in

I (ik) ∩ Ñ in
I (jk)):

γI =sup
x
xTE

[(
Im−

1

4

∑
l

(esikl
−esjkl

)eTsikl
Hdiag(1./mout)︸ ︷︷ ︸

Term 1

.HT
∑
l

esikl
(esikl

− esjkl
)T︸ ︷︷ ︸

Term 1

)
−
(
Hdiag(1./mout)HT︸ ︷︷ ︸

Term 2

−1

4

∑
l

(esikl
− esjkl

)eTsikl

∑
l

esikl
(esikl

− esjkl
)T︸ ︷︷ ︸

Term 2

+
1

2
(Im −Hdiag(1./mout)HT )

∑
l

esikl
(esikl

− esjkl
)T︸ ︷︷ ︸

Term 2

+
1

2
(
∑
l

(esikl
− esjkl

)eTsikl
)(Im −Hdiag(1./mout)HT )︸ ︷︷ ︸

Term 2

)]
x.

We aim to prove that xTE[Term 1]x ≤ 1. Multiplying xT and x into Term 1, we
arrive at,

xTE[Term 1]x = 1− 1

4
E
[∥∥∥diag(1./

√
mout)HT

∑
l

esikl
(esikl

− esjkl
)Tx

∥∥∥2] ≤ 1.(35)

The equality holds for all x’s that satisfy HT
∑
l esikl

(esikl
− esjkl

)Tx = 0. After
a few manipulations, by the strong connectivity of GC (Remark 3) for i ∈ V ,
j ∈ N in

C (i) and l ∈ (Ñ in
I (ik) ∩ Ñ in

I (jk)) we obtain,

xsil = xsjl . (36)

To complete the proof we need to show xTE[Term 2]x > 0 for all x’s satisfy (36)
and ‖x‖ = 1. After some manipulations we obtain,



16 F. Salehisadaghiani and L. Pavel

xTE[Term 2]x = xTHdiag(1./mout)HTx = ‖diag(1./
√

mout)HTx‖2 ≥ 0 (37)

The rest of the proof is straightforward by verifying that for all x’s which satisfy
(36) and ‖x‖ = 1, HTx 6= 0. �

Theorem 3. Let x̃(k) be the stack vector with all temporary estimates of the
players and ZI(k) be its average as in (32). Let also αk,max = maxi∈V αk,i.
Then under Assumptions 5, 6, 1′, the following hold.
i)
∑∞
k=0 αk,max‖x̃(k)− ZI(k)‖ <∞, ii)

∑∞
k=0 ‖x̃(k)− ZI(k)‖2 <∞.

Proof . The proof is based on Lemmas 4, 5 and follows similar to the proof
Theorem 1 in [15].

Corollary 2. Let zI(k) := diag(1./mout)HT x̃(k) ∈ RN be the average of all
players’ temporary estimates. Under Assumptions 5, 6, 1′, the following hold for
players’ actions x(k) and x̄(k):
i)
∑∞
k=0 αk,max‖x(k)− zI(k)‖ <∞, ii)

∑∞
k=0 ‖x(k)− zI(k)‖2 <∞,

iii)
∑∞
k=0 E

[
‖x̄(k)− ZI(k)‖2

∣∣∣Mk

]
<∞.

Proof . The proof follows by taking into account x(k) = [x̃ii(k)]i∈V , ZI(k) =
HzI(k), x̄(k) = W I(k)x̃(k) and also using Theorem 3.

Theorem 4. Let x(k) and x∗ be all players’ actions and the NE of G, respec-
tively. Under Assumptions 1′-3′, 5, 6, the sequence {x(k)} generated by the al-
gorithm converges to x∗, almost surely.

Proof . The proof uses Theorem 3 and is similar to the proof of Theorem 2
in [15].

8 Simulation Results

8.1 Social Media Behavior

In this example we aim to investigate social networking media for users’ behavior.
In such media like Facebook, Twitter and Instagram users are allowed to follow
(or be friend with) the other users and post statuses, photos and videos or
also share links and events. Depending on the type of social media, the way
of communication is defined. For instance, in Instagram, friendship is defined
unidirectional in a sense that either side could be only a follower and/or being
followed.

Recently, researchers at Microsoft have been studying the behavioral attitude
of the users of Facebook as a giant and global network [10]. This study can be
useful in many areas e.g. business (posting advertisements) and politics (posting
for the purpose of presidential election campaign).

Generating new status usually comes with the cost for the users such that if
there is no benefit in posting status, the users don’t bother to generate new ones.
In any social media drawing others’ attention is one of the most important mo-
tivation/stimulation to post status [6]. Our objective is to find the optimal rate
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of posting status for each selfish user to draw more attention in his network. In
the following, we make an information/attention model of a generic social media
[6] and define a way of communication between users (GC) and an interference
graph between them (GI).

Consider a social media network of N users. Each user i produces xi unit of
information that the followers can see in their news feeds. The users’ communi-
cation network is defined by a strongly connected digraph GC in which i©→ j©
means j is a follower of i or j receives xi in his news feed. We also assume a
strongly connected interference digraph GI to show the influence of the users on
the others. We assume that each user i’s cost function is not only affected by
the users he follows, but also by the users that his followers follow.

The cost function of user i is denoted by Ji and consists of three parts:

1. Ci(xi): A cost that user i pays to produce xi unit of information.

Ci(xi) := hixi, hi > 0.

2. f1i (x): A differentiable, increasing and concave utility function of user i from
receiving information from his news feed with f1i (0) = 0.

f1i (x) := Li

√ ∑
j∈N in

C (i)

qjixj , Li > 0,

where qji represents follower i’s interest in user j’s information and Li is a
user-specific parameter.

3. f2i (x): An incremental utility function that each user obtains from receiving
attention in his network with f2i (x)|xi=0 = 0. Specifically, this function tar-
gets the amount of attention that each follower pays to the information of
other users in his news feed.

f2i (x) =
∑

l:i∈N in
C (l)

Ll

(√ ∑
j∈N in

C (l)

qjlxj −
√ ∑
j∈N in

C (l)\{i}

qjlxj

)
.

The total cost function for user i is then Ji(x) = Ci(xi)− f1i (x)− f2i (x). For
this example, we consider 5 users in the social media whose network of followers
GC is given in Fig. 2. (a). From GC and taking Ji into account, one can construct
GI (Fig. 2. (b)) in a way that the interferences among users are specified. Note
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Fig. 1: (a) GC (b) GI .
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that this is a reverse process of the one discussed in Section 5 because GC is given
as the network of followers and GI is constructed from GC . For the particular
networks in Fig. 2, Assumptions 5, 6 hold. We then employ the algorithm in
Section 6 to find an NE of this game for hi = 2 and Li = 1.5 for i ∈ V , and
q41 = q45 = 1.75, q32 = q43 = 2 and the rest of qij = 1.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.5

0

0.5

1

1.5

2

2.5

3

 Iteration

 U
ni

t o
f i

nf
or

m
at

io
n 

th
at

 e
ac

h 
us

er
 p

ro
du

ce
s

 

 

x
1

x
2

x
3

x
4

x
5

Fig. 2: Convergence of the unit of information that each user produces to a NE
over GC .

8.2 Analysis

In this section we analyze the NE x∗ = [0, 0, 0.42, 2.24, 0.14]T . From GC in Fig.
2 (a), one can realize that user 4 has 3 followers (users 1, 3 and 5), user 3 has 2
followers (users 2 and 5) and the rest has only 1 follower. It is straightforward to
predict that users 4 and 3 could draw more attentions due to their more number
of followers which is end up having less cost. This let them to produce more
information (x∗4 ≥ x∗3 ≥ x∗j∈{1,2,5}). On the other hand, user 5 receives x4 and
x3 from his news feed which ends up having greater payoff than users 1 and 2
from perceiving information. This is why x∗5 ≥ x∗j∈{1,2}.

9 Conclusions

We proposed an asynchronous gossip-based algorithm to find an NE of a net-
worked game over a complete graph. Then, we extended our algorithm for the
case of graphical games. We specified the locality of cost functions using an in-
terference graph. Then, we provide a convergence proof to an NE of the game
under an assumption on the communication graph.
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