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Abstract

Multi-modal analyses of diseases of the optic nerve, that combine radiological imaging with other 

electronic medical records (EMR), improve understanding of visual function. We conducted a 

study of 55 patients with glaucoma and 32 patients with thyroid eye disease (TED). We collected 

their visual assessments, orbital CT imaging, and EMR data. We developed an image-processing 

pipeline that segmented and extracted structural metrics from CT images. We derive EMR 

phenotype vectors with the help of PheWAS (from diagnostic codes) and ProWAS (from treatment 

codes). Next, we performed a principal component analysis and multiple-correspondence analysis 

to identify their association with visual function scores. We find that structural metrics derived 

from CT imaging are significantly associated with functional visual score for both glaucoma 

(R2=0.32) and TED (R2=0.4). Addition of EMR phenotype vectors to the model significantly 

improved (p<1E-04) the R2 to 0.4 for glaucoma and 0.54 for TED.
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1 Introduction

Pathologies of the optic nerve affect millions of Americans each year and cancan severely 

affect an individual’s quality of life due to loss of visual function [1]. Accurate 

characterization of these diseases and timely intervention can preserve visual function. 3D 

computed tomography (CT) imaging of the eye orbit can capture structural changes in the 
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eye orbit, which indicate the extent of disease progression and characterize pathology. In 

prior studies [2, 3], a quantitative relationship between 3D structural metrics of the eye orbit 

was shown to be associated with visual outcomes such as visual acuity and field vision in 

patients with optic nerve disorders. However, the percentage of explained variance due to 

structural data was low (R2 ~ 0.1–0.2). Several factors influence a model’s ability to explain 

outcomes, particularly the selection of predictive features. Also, while information is 

available in radiological imaging, evaluation of radiology within the context of an 

individual’s health history is important in determining functional changes, progression of 

disease, and prognosis. With the rise in adoption of digital electronic medical record (EMR) 

systems in the US health care system[4, 5], these records are available to medical research 

scientists with increasing ease.

In this study we develop an automated pipeline for segmentation and metric calculation of 

CT eye orbits for glaucoma and thyroid eye disease (TED). Further, we show that integrating 

EMR data, such as ICD-9 (International Classificaion of Diseases – 9) codes, and CPT 

(Current Procedural Terminology) codes, with imaging biomarkers improves the explained 

variance of disease outcomes.

2 Methods

2.1 Data

The study was conducted on a retrospective cohort of patients at Vanderbilt University 

Medical Center. Subjects were retrieved under Institutional Review Board (IRB) approval 

based on both having met clinical criteria for eye disease and undergoing CT imaging as part 

of their regular clinical care. The data collected include imaging records, visual testing, 

demographic data, complete ICD-9 codes and CPT codes. The disease groups included in 

this study are glaucoma (n=55) and TED (n=32).

2.2 Outcomes: Visual function scores

The outcomes in this study were calculated based on clinical visual acuity and visual field 

testing. Nine different outcome measures are calculated for a complete visual function 

evaluation as defined by the American Medical Association [6]. Right and left visual acuity 

scores are calculated as VASod and VASos respectively. The visual acuity for both eyes, 

VASou is calculated as the best of VASod and VASos. The functional acuity score, FAS is a 

weighted score of VASod, VASos, and VASou with weights 1:1:3. The scores from visual 

field testing, VFSod, VFSos, VFSou, and FFS are calculated similarly. A final score of visual 

function called functional visual score (FVS), is calculated as the average of FAS and FFS.

2.3 Image processing

Figure 1 shows the image segmentation pipeline. First, multi-atlas segmentation was 

employed to identify four labels: the globe, the optic nerve, the extraocular muscles and the 

periorbital fat. A set of twenty-five expertly labeled example 3D CT atlases is used as 

training examples to obtain the segmentation from a new input 3D CT scan. Each of the 

example atlases is non-rigidly registered to the cropped input image space [7]. The 

Chaganti et al. Page 2

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



corresponding labels of the example atlases are propagated to the input image space using 

the non-rigid deformations. Next, non-local statistical label fusion is used to obtain a 

segmented result with the four labels[8]. Segmenting the individual extra-ocular rectus 

muscles is challenging in diseased eyes, since obtaining true labels is difficult at the back of 

the orbit due to inflammation. So, we employ Kalman filters to segment muscle labels 

obtained from the multi-atlas algorithm[3] to identify the superior rectus muscle, the inferior 

rectus muscle, the lateral rectus muscle, the medial rectus muscle. Once the final 

segmentation is obtained twenty-five structural metrics are computed bilaterally [2]. For 

each structure, the volume, cross-sectional area, and diameter/length are measured. Indices 

of orbital crowding, i.e., Barrett’s muscle index and volumetric crowding index are 

computed. In addition, degree of proptosis and orbital angle are computed. For each patient, 

i, a vector with 50 elements is constructed for 25 structural metrics computed bilaterally,

where, smk_os indicates kth structural metric of the left eye and smk_od indicates kth 

structural metric of the left eye.

2.4 EMR Features

From the EMR, complete ICD-9 codes and CPT codes were extracted for diagnostic and 

treatment information for each patient. However, only the ICD-9 and CPT codes available 

one month or more before the diagnosis are considered, since we are interested in 

understanding how a patient’s history provides a context for imaging information.

PheWAS codes—There are over 14,000 ICD-9 codes defined. A hierarchical system was 

defined that maps each ICD-9 code to a smaller group of 1865 phenotype codes originally 

used in phenome-wide association studies (PheWAS)[9]. Each phenotype, called a PheWAS 

code, indicates a related group of medical diagnoses and conditions.

ProWAS codes—We introduce a similar hierarchical grouping to map each CPT code to a 

group of related procedures, which we indicate by a procedure wide association study 

(ProWAS) code. We define 1682 ProWAS codes, which are finer granularity subgroups of 

the Clinical Classification Systems coding provided by the Healthcare Cost and Utilization 

Project (HCUP) Agency for Healthcare Research and Quality [10].

For each patient, i, a binary vector with 1865 elements,  is defined,

where, dk is 1 if the patient i has had the diagnosis phenotype dk in the past and 0 otherwise. 

Similarly, a binary vector,  is defined with 1682 elements,
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where, tk is 1 if the patient i has had the treatment phenotype tk in the past and 0 otherwise.

2.5 Dimensionality reduction: PCA and MCA

A large amount of data is available for each patient; the final data vector for a patient i has 

3597 elements in it. However, the data are correlated with each other, and it is possible to 

find underlying principal variables in the data. For the structural metrics, a principal 

component analysis (PCA)[11] is performed to reduce the dimensionality of the dataset. The 

first five principal components explaining about three fourths of the variance are extracted to 

give, for subject i,

(1)

For the PheWAS and ProWAS binary vectors, multiple correspondence analysis (MCA) [12] 

is used to extract orthogonal components that are decomposed using the χ2-statistic. The 

first five components are considered for both PheWAS and ProWAS vectors. As a result of 

MCA, we get two vectors of smaller dimensionality for each patient,

(2)

(3)

2.6 Stepwise generalized linear model

The visual acuity scores are between 0 and 100 with most patients having scores close to 

100 and values closer to 0 being extremely rare. This makes the distribution of the visual 

outcomes left skewed. Therefore, a generalized regression model (GLM) with a Poisson 

distribution [13] is used to find the explanatory value of each set of datasets, given by 

equations (1), (2) and (3), and all the data together. These datasets are regressed over the 

visual outcome scores sv, where v ∈ {VASou, VASod, VASos, VAS, FAS, VFSou, VFSod, 

VFSos, FFS, FVS}. Four models are defined for each v,
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The four models are built using stepwise regression[14], with forward selection of variables. 

At each step, the variable that most significantly improves the model deviance is added until 

there is no more improvement. The explained variance of each model, R2 is noted.

2.7 Test of deviance

The deviance of a model M, with fitted parameters θ̂ is given by,

where, θs are the parameters of the saturated model, i.e., a model with parameters for each 

data point such that it is fitted exactly. The deviance can be used to test significance between 

two nested models Mp(θ̂p|X) and Mq (θ̂q|X), where θ̂p ⊂ θ̂q and the difference in the 

parameters between the two models is given by δ. The difference of the deviance between 

the two models follows a χ2 –squared distribution with degree of freedom δ. The null 

hypothesis, H0 for the test of deviance is that adding δ parameters to model Mp to get Mq 

does not improve the model. This test is used to compare models M2–4 with M1.

3 Results

The average age group for glaucoma cohort 65.4±19.5 years and 72% of the subjects were 

female. 91% of TED subjects were female, and the average age for this group is 57.8±16.2 

years. On an average, each patient had 410 ICD-9 codes, and 660 CPT codes recorded. 

Figure 2 shows the individual distribution by sex along the first two components of the three 

datasets in models M2, M3, and M4. For glaucoma, the first component of the PCA on 

structural metrics corresponded to muscle and optic nerve measurements, and the second 

component corresponded to orbital and globe measurements. For TED, the first component 

corresponded to mostly muscle measurements, and the second component corresponded to 

measurements of the optic nerve. Some of the conditions associated with the first MCA 

component of the ICD-9 vector for Glaucoma are malaise, osteoarthrosis, and hypovolemia, 

and conditions associated with the second component included female genitourinary 

symptoms and symptoms associated with the eye such as pain and swelling. The first MCA 

component for TED’s ICD-9 vector was associated with conditions including 

hyperlipidemia, diabetes, and circulatory problems, and some of the conditions most 

associated with the second MCA component were myalgia and abnormal blood chemistry. 

For the CPT vector for glaucoma, the first dimension was associated with a wide range of 
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procedures such as CT scans, and pathology labs, and the second component was associated 

with cardiac testing. For TED, the first component was associated with procedures such as 

urinalysis and blood work, the second component was associated with physical therapy 

related procedures.

Tables 1 and 3 show the R2 values of models M1, M2, M3, and M4 regressed over 

functional visual scores for glaucoma and TED respectively. The behavior of the models is 

the same for both the diseases. Addition of treatment and diagnostic phenotypes to model 

M2 to get model M1 results in significant improvement of explained variance in most of the 

visual outcomes: FVS, FFS, VFSou, VFSod, VFSos, VASod and VASos. The R2 values that 

improve between model M2 to M1 are indicated by ** in Tables 1 and 3. The statistical 

significance of this improvement is tested using the test of deviance as described in section 

2.7. Tables 2 and 4 show the p-values of the tests of deviance performed between M1 and its 

nested models M2, M3, and M4.

However, it is interesting to note that composite visual acuity scores VASou and FAS do not 

show an improvement between models M2 and M1, even though the right and left acuity 

scores VASod and VASos do. Note from the definition of these scores that they weight the 

best performing eye higher. This might indicate that changes in visual acuity might not be 

bilateral in these conditions. Whereas, for visual field scores the behaviour of the individual 

eye scores is reflected in the composite scores, indicating that visual field changes might be 

bilateral in glaucoma and TED.

4 Discussion

To identify imaging biomarkers associated with diseases of the optic nerve such as glaucoma 

and thyroid eye disease, their relationship with visual function scores must be established. 

This study shows that addition of treatment and diagnostic phenotypes derived through 

MCA on ProWAS and PheWAS data can improve traditional imaging biomarker studies by 

providing the context of an individual’s health history from clinical data. This is the first 

known study with the application of ProWAS mapping to identify treatment phenotypes for 

eye disease. We show that structural metrics of the eye orbit derived from CT imaging, 

treatment, and diagnostic phenotypes show a significant association with visual function 

scores and explain about 40% – 60% of the variance for visual outcomes in glaucoma and 

thyroid eye disease.
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Fig. 1. 
Overview of image segmentation. Multi-atlas label fusion is used to segment the optic nerve, 

globe, muscle, and orbital fat. Kalman filters are used to segment the four individual 

extraocular muscles based on the result to achieve the final 3D segmentation result.
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Fig. 2. 
Distribution of individuals by sex along the first two components from equations (1), (2), 

and (3). Red and blue indicate 95% confidence ellipses for females and males respectively. 

(A) xCT_pca for glaucoma. (B) xPheWAS_mca for glaucoma. (C) xProWAS_mca for glaucoma. 

(D) xCT_pca for TED. (E) xPheWAS_mca for TED. (F) xProWAS_mca for TED.
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