Skip to main content

3D Lymphoma Segmentation in PET/CT Images Based on Fully Connected CRFs

  • Conference paper
  • First Online:
Book cover Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment (RAMBO 2017, CMMI 2017, SWITCH 2017)

Abstract

Positron Emission Tomography (PET) is widely used for lymphoma detection. It is often combined with the CT scan in order to provide anatomical information for helping lymphoma detection. Two common types of approaches can be distinguished for lymphoma detection and segmentation in PET. The first one is ROI dependent which needs a ROI defined by physicians who firstly detect where lymphomas are. The second one is based on machine learning methods which need a large learning database. However, such a large standard database is quite rare in medical field. Considering these problems, we propose a new approach which combines a multi-atlas segmentation of the CT with CRFs (Conditional Random Fields) segmentation method in PET. It consists of 3 steps. Firstly, an anatomical multi-atlas segmentation is applied on CT to locate and remove the organs having hyper metabolism in PET. Secondly, CRFs detect and segment the lymphoma regions in PET. The conditional probabilities used in CRFs are usually estimated by a learning step. In this work, we propose to estimate them in an unsupervised way. A list of the detected regions in 3D is visualized. The final step is to select real lymphomas by simply clicking on them. Our method is tested on ten patients. The rate of good detection is 100%. The average of Dice index over 10 patients for measuring the lymphoma is 80% compared to manual lymphoma segmentation. Comparing with other methods in terms of Dice index shows the best performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaidi, H., El Naqa, I.: PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur. J. Nucl. Med. Mol. Imaging 37, 2165–2187 (2010)

    Article  Google Scholar 

  2. Desbordes, P., Petitjean, C., Ruan, S.: 3D automated lymphoma segmentation in PET images based on cellular automata. IEEE, (2015). Electronic ISSN:2154-512X

    Google Scholar 

  3. Eloïse, G., Hugues, T., Nicolas, P., Michel, M., Laurent, N.: Automated 3D lymphoma lesion segmentation from PET/CT characteristics. In: Symposium on Biomedical Imaging: From Nano to Macro, pp. 174–178 (2017)

    Google Scholar 

  4. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81, 2–23 (2007)

    Article  Google Scholar 

  5. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with gaussian edge potentials. Adv. Neural. Inf. Process. Syst. 24, 109–117 (2011)

    Google Scholar 

  6. Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. IEEE (2011). doi:10.1109/ICCV.2001.937505

  7. Krähenbühl, P., Koltun, V.: Parameter learning and convergent inference for dense random fields. In: International Conference on Machine Learning (ICML) (2013)

    Google Scholar 

  8. Black, Q.C., Grills, I.S., Kestin, L.L., Wong, C.Y., Wong, J.W., Martinez, A.A., Yan, D.: Defining a radiotherapy target with positron emission tomography. Int. J. Radiat. Oncol. Biol. Phys. 60(4), 1272–1282 (2004)

    Article  Google Scholar 

  9. Nestle, U., Kremp, S., Schaefer-Schuler, A., Sebastian-Welsch, C., Hellwig, D., Rübe, C., Kirsch, C.M.: Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J. Nucl. Med. 46(8), 1342–1348 (2005)

    Google Scholar 

  10. Vauclin, S., Doyeux, K., Hapdey, S., Edet-Sanson, A., Vera, P., Gardin, I.: Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models. Phys. Med. Biol. 54(22), 6901–6916 (2009)

    Article  Google Scholar 

  11. Rother, C., Kolmogorov, V., Blake, A.: GrabCut -interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (SIGGRAPH) (2004)

    Google Scholar 

  12. Yan, T., Liu, Q., Wei, Q., Chen, F., Deng, T.: Classification of lymphoma cell image based on improved SVM. In: Zhang, T.-C., Nakajima, M. (eds.) Advances in Applied Biotechnology. LNEE, vol. 332, pp. 199–208. Springer, Heidelberg (2015). doi:10.1007/978-3-662-45657-6_21

    Google Scholar 

  13. Sharif, M.S., Amira, A., Zaidi, H.: 3D oncological PET volume analysis using CNN and LVQNN. In: Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems (ISCAS 2010), pp. 1783–1786, June 2010

    Google Scholar 

  14. Zhoubing, X.U., Ryan, R.P., Lee, C.P., Baucom, R.B., Poulose, B.K., Abramson, R.G., Landman, B.A.: Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med. Image Anal. 24(1), 18–27 (2015)

    Article  Google Scholar 

  15. Tylski, P., Stute, S., Grotus, N., Doyeux, K., Hepdey, S., Gardin, I., Vanderlinden, B., Buvat, I.: Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18) F-FDG PET. J. Nucl. Med. 51, 268–276 (2010)

    Article  Google Scholar 

  16. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.A.: comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)

    Article  Google Scholar 

  17. Weiler-Sagie, M., Bushelev, O., Epelbaum, R., Dann, E.J., Haim, N., Avivi, I., Ben-Barak, A., Ben-Arie, Y., Bar-Shalom, R., Israel, O.: (18) F-FDG avidity in lymphoma readdressed: a study of 766 patients. J. Nucl. Med. 51(1), 25–30 (2009)

    Article  Google Scholar 

  18. Cottereau, A.-S., Lanic, H., Mareschal, S., Meignan, M., Vera, P., Tilly, H., Jardin, F., Becker, S.: Molecular profile and FDG-PET/CT total metabolic tumor volume improve risk classification at diagnosis for patients with diffuse large b-cell lymphoma. Clin. Cancer Res. 22(15), 3801–3809 (2016)

    Article  Google Scholar 

  19. Meignan, M., Sasanelli, M., Casasnovas, R.O., Luminari, S., Fioroni, F., Coriani, C., Masset, H., Itti, E., Gobbi, P.G., Merli, F., Versari, A.: Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients. Eur. J. Nucl. Med. Mol. Imaging 41(6), 1113–1122 (2014)

    Article  Google Scholar 

  20. Meignan, M., Gallamini, A., Meignan, M., Gallamini, A., Haioun, C.: Report on the first international workshop on interim-PET scan in lymphoma. Leuk. Lymphoma 50(8), 1257–1260 (2009)

    Article  Google Scholar 

  21. Barrington, S.F., Kluge, R.: FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur. J. Nucl. Med. Mol. Imaging (2017). doi:10.1007/s00259-017-3690-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Ruan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, Y., Decazes, P., Gardin, I., Vera, P., Ruan, S. (2017). 3D Lymphoma Segmentation in PET/CT Images Based on Fully Connected CRFs. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67564-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics