
ar
X

iv
:1

70
4.

05
13

6v
2

 [
cs

.D
B

]
 2

6
Ju

n
20

17

The Causality/Repair Connection in Databases:

Causality-Programs

Leopoldo Bertossi⋆

Carleton University, School of Computer Science, Ottawa, Canada.

Abstract. In this work, answer-set programs that specify repairs of databases are

used as a basis for solving computational and reasoning problems about causes

for query answers from databases.

1 Introduction

Causality appears at the foundations of many scientific disciplines. In data and knowl-

edge management, the need to represent and compute causes may be related to some

form of uncertainty about the information at hand. More specifically in data manage-

ment, we need to understand why certain results, e.g. query answers, are obtained or

not. Or why certain natural semantic conditions are not satisfied. These tasks become

more prominent and difficult when dealing with large volumes of data. One would ex-

pect the database to provide explanations, to understand, explore and make sense of the

data, or to reconsider queries and integrity constraints (ICs). Causes for data phenomena

can be seen as a kind of explanations.

Seminal work on causality in DBs introduced in [17], and building on work on

causality as found in artificial intelligence, appeals to the notions of counterfactuals,

interventions and structural models [15]. Actually, [17] introduces the notions of: (a) a

DB tuple as an actual cause for a query result, (b) a contingency set for a cause, as a

set of tuples that must accompany the cause for it to be such, and (c) the responsibility

of a cause as a numerical measure of its strength (building on [11]).

Most of our research on causality in DBs has been motivated by an attempt to under-

stand causality from different angles of data and knowledge management. In [6], precise

reductions between causality in DBs, DB repairs, and consistency-based diagnosis were

established; and the relationships where investigated and exploited. In [7], causality in

DBs was related to view-based DB updates and abductive diagnosis. These are all inter-

esting and fruitful connections among several forms of non-monotonic reasoning; each

of them reflecting some form of uncertainty about the information at hand. In the case

of DB repairs [3], it is about the uncertainty due the non-satisfaction of given ICs, which

is represented by presence of possibly multiple intended repairs of the inconsistent DB.

DB repairs can be specified by means of answer-set programs (or disjunctive logic

programs with stable model semantics) [14], the so-called repair-programs. Cf. [10, 3]

for repair-programs and additional references. In this work we exploit the reduction of

DB causality to DB repairs established in [6], by taking advantage of repair programs

for specifying and computing causes, their contingency sets, and their responsibility de-

grees. We show that that the resulting causality-programs have the necessary and suffi-

cient expressive power to capture and compute not only causes, which can be done with

⋆ Email: bertossi@scs.carleton.ca. Research supported by NSERC Discovery Grant #06148.

http://arxiv.org/abs/1704.05136v2

less expressive programs [17], but specially minimal contingency sets and responsibil-

ities (which can not). Causality programs can also be used for reasoning about causes.

Finally, we briefly show how causality-programs can be adapted to give an account of

other forms of causality in DBs.

2 Background

Relational DBs. A relational schema R contains a domain, C, of constants and a set,

P , of predicates of finite arities. R gives rise to a language L(R) of first-order (FO)

predicate logic with built-in equality, =. Variables are usually denoted by x, y, z, ...,
and sequences thereof by x̄, ...; and constants with a, b, c, ..., etc. An atom is of the

form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn terms, i.e. constants, or variables.

An atom is ground (aka. a tuple) if it contains no variables. A DB instance, D, forR is

a finite set of ground atoms; and it serves as an interpretation structure for L(R).
A conjunctive query (CQ) is a FO formula,Q(x̄), of the form ∃ȳ (P1(x̄1) ∧ · · · ∧

Pm(x̄m)), with Pi ∈ P , and (distinct) free variables x̄ := (
⋃
x̄i)r ȳ. If Q has n (free)

variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄] is true in D when

the variables in x̄ are componentwise replaced by the values in c̄.Q(D) denotes the set

of answers to Q from D D.Q is a boolean conjunctive query (BCQ) when x̄ is empty;

and when true in D, Q(D) := {true}. Otherwise, it is false, and Q(D) := ∅.
In this work we consider integrity constraints (ICs), i.e. sentences of L(R), that

are: (a) denial constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)),
where Pi ∈ P , and x̄ =

⋃
x̄i; and (b) functional dependencies (FDs), i.e. of the form

ϕ : ¬∃x̄(P (v̄, ȳ1, z1) ∧ P (v̄, ȳ2, z2) ∧ z1 6= z2). Here, x̄ = ȳ1 ∪ ȳ2 ∪ v̄ ∪ {z1, z2},
and z1 6= z2 is an abbreviation for ¬z1 = z2.1 A key constraint (KC) is a conjunction

of FDs:
∧k

j=1
¬∃x̄(P (v̄, ȳ1) ∧ P (v̄, ȳ2) ∧ yj1 6= yj2), with k = |ȳ1| = |ȳ2|. A given

schema may come with its set of ICs, and its instances are expected to satisfy them. If

this is not the case, we say the instance is inconsistent.

Causality in DBs. A notion of cause as an explanation for a query result was introduced

in [17], as follows. For a relational instance D = Dn ∪Dx, where Dn and Dx denote

the mutually exclusive sets of endogenous and exogenous tuples, a tuple τ ∈ Dn is

called a counterfactual cause for a BCQ Q, if D |= Q and D r {τ} 6|= Q. Now,

τ ∈ Dn is an actual cause forQ if there exists Γ ⊆ Dn, called a contingency set for τ ,

such that τ is a counterfactual cause for Q in D r Γ . This definition is based on [15].

The notion of responsibility reflects the relative degree of causality of a tuple for

a query result [17] (based on [11]). The responsibility of an actual cause τ for Q, is

ρ(τ) := 1

|Γ |+1
, where |Γ | is the size of a smallest contingency set for τ . If τ is not an

actual cause, ρ(τ) := 0. Tuples with higher responsibility are stronger explanations.

In the following we will assume all the tuples in a DB instance are endogenous.

(Cf. [6] for the general case.) The notion of cause as defined above can be applied to

monotonic queries, i.e whose sets of answers may only grow when the DB grows [6].2

In this work we concentrate only on conjunctive queries, possibly with 6=.

1 The variables in the atoms do not have to occur in the indicated order, but their positions should

be in correspondence in the two atoms.
2 E.g. CQs, unions of CQs (UCQs), Datalog queries are monotonic.

Example 1. Consider the relational DB D = {R(a4, a3), R(a2, a1), R(a3, a3), S(a4),
S(a2), S(a3)}, and the query Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y)). It holds, D |= Q.

S(a3) is a counterfactual cause for Q: if S(a3) is removed from D, Q is no longer

true. Its responsibility is 1. So, it is an actual cause with empty contingency set. R(a4, a3)
is an actual cause forQwith contingency set {R(a3, a3)}: if R(a3, a3) is removed from

D, Q is still true, but further removing R(a4, a3) makes Q false. The responsibility of

R(a4, a3) is 1

2
. R(a3, a3) and S(a4) are actual causes, with responsibility 1

2
. �

Database repairs. Cf. [3] for a survey on DB repairs and consistent query answering

in DBs. We introduce the main ideas by means of an example. The ICs we consider in

this work can be enforced only by deleting tuples from the DB (as opposed to inserting

tuples). Repairing the DB by changing attribute values is also possible [3, 4, 5], [6, sec.

7.4], but until further notice we will not consider this kind of repairs.

Example 2. The DB D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent with respect

to the (set of) denial constraints (DCs) κ1 : ¬∃x∃y(P (x) ∧ Q(x, y)), and κ2 :
¬∃x∃y(P (x) ∧R(x, y)). It holds D 6|= {κ1, κ2}.

A subset-repair, in short an S-repair, of D wrt. the set of DCs is a⊆-maximal subset

of D that is consistent, i.e. no proper superset is consistent. The following are S-repairs:

D1 = {P (e), Q(a, b), R(a, b)} and D2 = {P (e), P (a)}. A cardinality-repair, in short

a C-repair, of D wrt. the set of DCs is a maximum-cardinality, consistent subset of D,

i.e. no subset of D with larger cardinality is consistent. D1 is the only C-repair. �

For an instanceD and a set Σ of DCs, the sets of S-repairs and C-repairs are denoted

with Srep(D,Σ) and Crep(D,Σ), resp.

3 Causality Answer Set Programs

Causes from repairs. In [6] it was shown that causes for queries can be obtained

from DB repairs. Consider the BCQ Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) that is (possibly

unexpectedly) true in D: D |= Q. Actual causes for Q, their contingency sets, and

responsibilities can be obtained from DB repairs. First, ¬Q is logically equivalent to

the DC:
κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). (1)

So, ifQ is true in D, D is inconsistent wrt. κ(Q), giving rise to repairs of D wrt. κ(Q).
Next, we build differences, containing a tuple τ , between D and S- or C-repairs:

(a) Dif s(D,κ(Q), τ) = {D rD′ | D′ ∈ Srep(D,κ(Q)), τ ∈ (D rD′)}, (2)

(b) Dif c(D,κ(Q), τ) = {D rD′ | D′ ∈ Crep(D,κ(Q)), τ ∈ (D rD′)}. (3)

It holds [6]: τ ∈ D is an actual cause for Q iff Dif s(D,κ(Q), τ) 6= ∅. Further-

more, each S-repair D′ for which (D rD′) ∈ Dif s(D,κ(Q), τ) gives us (D r (D′ ∪
{τ})) as a subset-minimal contingency set for τ . Also, if Dif s(D κ(Q), τ) = ∅, then

ρ(τ) = 0. Otherwise, ρ(τ) = 1

|s| , where s ∈ Dif s(D, κ(Q), τ) and there is no

s′ ∈ Dif s(D,κ(Q), τ) with |s′| < |s|. As a consequence we obtain that τ is a most

responsible actual cause for Q iff Dif c(D,κ(Q), τ) 6= ∅.

Example 3. (ex. 1 cont.) With the same instance D and query Q, we consider the

DC κ(Q): ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), which is not satisfied by D. Here,

Srep(D,κ(Q)) = {D1, D2, D3} andCrep(D,κ(Q)) = {D1}, withD1 = {R(a4, a3),

R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2), S(a3)}, D3 =
{R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Dif s(D,κ(Q), R(a4, a3)) = {D rD2} = {{R(a4, a3),
R(a3, a3)}}. So,R(a4, a3) is an actual cause, with responsibility 1

2
. Similarly,R(a3, a3)

is an actual cause, with responsibility 1

2
. For tuple S(a3), Dif c(D,κ(Q), S(a3)) =

{D rD1} = {S(a3)}. So, S(a3) is an actual cause, with responsibility 1, i.e. a most

responsible cause. �

It is also possible, the other way around, to characterize repairs in terms of causes

and their contingency sets. Actually this connection can be used to obtain complex-

ity results for causality problems from repair-related computational problems [6]. Most

computational problems related to repairs, specially C-repairs, which are related to most

responsible causes, are provably hard. This is reflected in a high complexity for respon-

sibility [6] (see below for some more details).

Answer-set programs for repairs. Given a DB D and a set of ICs, Σ, it is possible to

specify the repairs of D wrt. Σ by means of an answer-set program (ASP) Π(D,Σ),
in the sense that the set, Mod(Π(D,Σ)), of its stable models is in one-to-one corre-

spondence with Srep(D,Σ) [10, 2] (cf. [3] for more references). In the following we

consider a single denial constraint κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)).3

Although not necessary for repair purposes, it may be useful on the causality side

having global unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is represented

as R(t, c̄) for some integer t that is not used by any other tuple in D. For the repair

program we introduce a nickname predicate R′ for every predicate R ∈ R that has an

extra, final attribute to hold an annotation from the set {d, s}, for “delete” and “stays”,

resp. Nickname predicates are used to represent and compute repairs.

The repair-ASP, Π(D,κ), for D and κ contains all the tuples in D as facts (with

tids), plus the following rules:

P ′
1(t1, x̄1, d) ∨ · · · ∨ P ′

m(tn, x̄m, d)← P1(t1, x̄1), . . . , Pm(tm, x̄m),

P ′
i (ti, x̄i, s)← Pi(ti, x̄i), not P

′
i (ti, x̄i, d), i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ := {P (c̄) |
P ′(t, c̄, s) ∈ M}, and every repair can be obtained in this way [10]. For an FD, say
ϕ : ¬∃xyz1z2vw(R(x, y, z1, v) ∧ R(x, y, z2, w) ∧ z1 6= z2), which makes the third
attribute functionally depend upon the first two, the repair program contains the rules:

R
′(t1, x, y, z1, v, d) ∨R

′(t2, x, y, z2, w, d) ← R(t1, x, y, z1, v), R(t2, x, y, z2, w), z1 6= z2.

R
′(t, x, y, z, v, s) ← R(t, x, y, z, v), not R′(t, x, y, z, v, d).

For DCs and FDs, the repair program can be made non-disjunctive by moving all the

disjuncts but one, in turns, in negated form to the body of the rule [10, 2]. For example,

the rule P (a)∨R(b)← Body , can be written as the two rules P (a)← Body , notR(b)
and R(b) ← Body , notP (a). Still the resulting program can be non-stratified if there

is recursion via negation [14], as in the case of FDs and DCs with self-joins.

Example 4. (ex. 3 cont.) For the DC κ(Q): ¬∃x∃y(S(x)∧R(x, y)∧S(y)), the repair-
ASP contains the facts (with tids) R(1, a4, a3), R(2, a2, a1), R(3, a3, a3), S(4, a4),
S(5, a2), S(6, a3), and the rules:

3 It is possible to consider a combination of several DCs and FDs, corresponding to UCQs

(possibly with 6=), on the causality side [6].

S
′(t1, x,d) ∨R

′(t2, x, y, d) ∨ S
′(t3, y, d) ← S(t1, x), R(t2, x, y), S(t3, y),

S
′(t, x, s) ← S(t, x), not S′(t, x,d). etc.

Repair D1 is represented by the stable model M1 containing R′(1, a4, a3, s),
R′(2, a2, a1, s), R

′(3, a3, a3, s), S
′(4, a4, s), S

′(5, a2, s), and S′(6, a3, d). �

Specifying causes with repair-ASPs. According to (2), we concentrate on the differ-

ences between the D and its repairs, now represented by {P (c̄) | P (t, c̄, d) ∈ M},
for M a stable model of the repair-program. They are used to compute actual causes

and their ⊆-minimal contingency sets, both identified by tids. So, given the repair-

ASP for a DC κ(Q), a binary predicate Cause(·, ·) will contain a tid for cause in

its first argument, and a tid for a tuple belonging to its contingency set. Intuitively,

Cause(t, t′) says that t is an actual cause, and t′ accompanies t as a member of the

former’s contingency set (as captured by the repair at hand or, equivalently, by the

corresponding stable model). More precisely, for each pair of predicates Pi, Pj in the

DC κ(Q) as in (1) (they could be the same if it has self-joins), introduce the rule

Cause(t, t′) ← P ′
i (t, x̄i, d), P

′
j(t

′, x̄j , d), t 6= t′, with the inequality condition only

when Pi and Pj are the same.

Example 5. (ex. 3 and 4 cont.) The causes for the query, represented by their tids,

can be obtained by posing simple queries to the program under the uncertain or brave

semantics that makes true what is true in some model of the repair-ASP.4 In this case,

Π(D,κ(Q)) |=brave Ans(t), where the auxiliary predicate is defined on top of Π(D,
κ(Q)) by the rules: Ans(t)← R′(t, x, y, d) and Ans(t)← S′(t, x, d).

The repair-ASP can be extended with the following rules to compute causes with

contingency sets:

Cause(t, t′)← S′(t, x, d),R′(t′, u, v, d),

Cause(t, t′)← S′(t, x, d), S′(t′, u, d), t 6= t′,

Cause(t, t′)← R′(t, x, y, d), S′(t′, u, d).

For the stable model M2 corresponding

to repair D2, we obtain Cause(1, 3) and

Cause(3, 1), from the repair differenceDr

D2 = {R(a4, a3), R(a3, a3)}. �

We can use the DLV system [16] to build the contingency set associated to a cause,

by means of its extension, DLV-Complex [9], that supports set building, membership

and union, as built-ins. For every atom Cause(t, t′), we introduce the atom Con(t,
{t′}), and the rule that computes the union of (partial) contingency sets as long as they

differ by some element:

Con(T,#union(C1, C2))← Con(T,C1),Con(T,C2),#member(M,C1),

not #member(M,C2).

The responsibility for an actual cause τ , with tid t, as associated to a given re-

pair D′ (with τ /∈ D′), and then to a given model M ′ of the extended repair-ASP,

can be computed by counting the number of t′s for which Cause(t, t′) ∈ M ′. This

responsibility will be maximum within a repair (or model): ρ(t,M ′) := 1/(1 +
|d(t,M ′)|), where d(t,M ′) := {Cause(t, t′) ∈ M ′}. This value can be computed

by means of the count function, supported by DLV [13], as follows: pre-rho(T,N)←
#count{T ′ : Con(T, T ′)} = N , followed by the rule computing the responsibility:

4 As opposed to the skeptical or cautious semantics that sanctions as true what is true in all

models. Both semantics as supported by the DLV system [16], to which we refer below.

rho(T,M) ← M ∗ (pre-rho(T,M) + 1) = 1. Or equivalently, via 1/|d(M)|, with

d(M ′) := {P (t′, c̄, d) | P (t′, c̄, d) ∈M ′}.
Each model M of the program so far will return, for a given tuple (id) that is an ac-

tual cause, a maximal-responsibility contingency set within that model: no proper subset

is a contingency set for the given cause. However, its cardinality may not correspond

to the (global) maximum responsibility for that tuple. For that we need to compute only

maximum-cardinality repairs, i.e. C-repairs.

C-repairs can be specified by means of repair-ASPs [1] that contain weak-program

constraints [8, 13]. In this case, we want repairs that minimize the number of deleted tu-

ples. For each DB predicateP , we introduce the weak-constraint5 ⇐ P (t, x̄), P ′(t, x̄, d).
In a model M the body can be satisfied, and then the program constraint violated, but

the number of violations is kept to a minimum (among the models of the program with-

out the weak-constraints). A repair-ASP with these weak constraints specifies repairs

that minimize the number of deleted tuples; and minimum-cardinality contingency sets

and maximum responsibilities can be computed, as above.

Complexity. Computing causes for CQs can be done in polynomial time in data [17],

which was extended to UCQs in [6]. As has been established in [17, 6], the compu-

tational problems associated to contingency sets and responsibility are in the second

level of the polynomial hierarchy (PH), in data complexity [12]. On the other side, our

causality-ASPs can be transformed into non-disjunctive, unstratified programs, whose

reasoning tasks are also in the second level of the PH (in data). It is worth mentioning

that the ASP approach to causality via repairs programs could be extended to deal with

queries that are more complex than CQs or UCQs. (In [18] causality for queries that

are conjunctions of literals was investigated; and in [7] it was established that cause

computation for Datalog queries can be in the second level of the PH.)

Causality programs and ICs The original causality setting in [17] does not consider

ICs. An extension of causality under ICs was proposed in [7]. Under it, the ICs have to

be satisfied by the DBs involved, i.e. the initial one and those obtained by cause- and

contingency-set deletions. When the query at hand is monotonic6, monotonic ICs (e.g.

denial constraints and FDs) are not much of an issue since they stay satisfied under dele-

tions associated to causes. So, the most relevant ICs are non-monotonic, such as refer-

ential ICs, e.g. ∀xy(R(x, y)→ S(x)) in our running example. These ICs can be repre-

sented in a causality-program by means of (strong) program constraints. In the running

example, we would have, for example, the constraint: ← R′(t, x, y, s), not S′(t′, x, s).7

Preferred causes and repairs. In [6], generalized causes were introduced on the basis of

arbitrary repair semantics (i.e. classes of preferred consistent subinstances, commonly

under some maximality criterion), basically starting from the characterization in (2) and

(3), but using repairs of D wrt. κ(Q) in a class, Rep(D,κ(Q)), possibly different from

Srep(D,κ(Q)) or Crep(D,κ(Q)). As a particular case in [6], causes based on changes

of attribute values (as opposed to tuple deletions) were defined. In that case, admissible

5 Hard program-constraints, of the form ← Body , eliminate the models where they are violated.
6 I.e. the set of answers may only grow when the instance grows.
7 Or better, to make it safe, by a rule and a constraint: aux(x) ← S′(t′, x, s) and ←

R′(t, x, y, s), not aux (x).

updates are replacements of data values by null values, to break joins, in a minimal

or minimum way. Those underlying DB repairs were used in [4] to hide sensitive data

that could be exposed through CQ answering; and corresponding repair programs were

introduced. They could be used, as done earlier in this paper, as a basis to reason about-

and compute the new resulting causes (at the tuple or attribute-value level) and their

contingency sets.8

References

[1] Arenas, M., Bertossi, L., Chomicki, J. Answer Sets for Consistent Query Answers. Theory

and Practice of Logic Programming, 2003, 3(4&5):393-424.

[2] Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically Cor-

rect Answers from Databases with Annotated Logic and Answer Sets. In Semantics in

Databases, Springer LNCS 2582, 2003, pp. 7-33.

[3] Bertossi, L. Database Repairing and Consistent Query Answering. Morgan & Claypool,

Synthesis Lectures on Data Management, 2011.

[4] Bertossi, L. and Li, L. Achieving Data Privacy through Secrecy Views and Null-Based

Virtual Updates. IEEE Trans. Knowledge and Data Engineering, 2013, 25(5):987-1000.

[5] Bertossi, L. and Bravo, L. Consistency and Trust in Peer Data Exchange Systems. Theory

and Practice of Logic Programming, 2017, 17(2):148-204.

[6] Bertossi, L. and Salimi, B. From Causes for Database Queries to Repairs and Model-Based

Diagnosis and Back. Theory of Computing Systems, 2017, 61(1):191232.

[7] Bertossi, L. and Salimi, B. Causes for Query Answers from Databases: Datalog Abduction,

View-Updates, and Integrity Constraints. To appear in Int. J. Approximate Reasoning. Corr

Arxiv Paper cs.DB/1611.01711.

[8] Buccafurri, F., Leone, N. and Rullo, P. Enhancing Disjunctive Datalog by Constraints. IEEE

Tran. Knowledge and Data Engineering, 2000, 12, 5, 845860.

[9] Calimeri, F. Cozza, S. Ianni, G. and Leone, N. An ASP System with Functions, Lists, and

Sets. Proc. LPNMR 2009, Springer LNCS 5753, 2009, pp. 483-489.

[10] Caniupan-Marileo, M. and Bertossi, L. The Consistency Extractor System: Answer Set

Programs for Consistent Query Answering in Databases”. Data & Know. Eng., 2010,

69(6):545-572.

[11] Chockler, H. and Halpern, J. Y. Responsibility and Blame: A Structural-Model Approach.

J. Artif. Intell. Res., 2004, 22:93-115.

[12] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity and Expressive Power of

Logic Programming, ACM Computing Surveys, 2001, 33(3):374425.

[13] Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T. and Ielpa, G. Design and implementation

of aggregate functions in the DLV system. The. Pr. Logic Prog., 2008, 8(5-6):545-580.

[14] Gelfond, M. and Kahl, Y. Knowledge Representation and Reasoning, and the Design of

Intelligent Agents. Cambridge Univ. Press, 2014.

[15] Halpern, J. and Pearl, J. Causes and Explanations: A Structural-Model Approach: Part 1.

British J. Philosophy of Science, 2005, 56:843-887.

[16] Leone, N., Pfeifer, G., Faber,W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F. The DLV

System for Knowledge Representation and Reasoning. ACM Trans. Comput. Logic., 2006,

7(3):499-562.

[17] Meliou, A., Gatterbauer, W., Moore, K. F. and Suciu, D. The Complexity of Causality and

Responsibility for Query Answers and Non-Answers. Proc. VLDB, 2010, pp. 34-41.

[18] Salimi, B., Bertossi, L., Suciu, D. and Van den Broeck, G. Quantifying Causal Effects on

Query Answering in Databases. Proc. TaPP, 2016.

8 Cf. also [5] for an alternative null-based repair semantics and its repair programs.

	*-1cm The Causality/Repair Connection in Databases: Causality-Programs-3mm

