Skip to main content

Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion

  • Chapter
  • First Online:
Advances in Feature Selection for Data and Pattern Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 138))

Abstract

The classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications. The chapter presents an experimental study of several methods for real motion and motion intent classification (rest/upper/lower limbs motion, and rest/left/right hand motion). First, our approach to EEG recordings segmentation and feature extraction is presented. Then, 5 classifiers (Naïve Bayes, Decision Trees, Random Forest, Nearest-Neighbors NNge, Rough Set classifier) are trained and tested using examples from an open database. Feature subsets are selected for consecutive classification experiments, reducing the number of required EEG electrodes. Methods comparison and obtained results are presented, and a study of features feeding the classifiers is provided. Differences among participating subjects and accuracies for real and imaginary motion are discussed. It is shown that though classification accuracy varies from person to person, it could exceed 80% for some classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alotaiby, T., El-Samie, F.E., Alshebeili S.A.: A review of channel selection algorithms for eeg signal processing. EURASIP. J. Adv. Signal Process, 66 (2015)

    Google Scholar 

  2. BCI2000. Bci2000 instrumentation system project. http://www.bci2000.org, Accessed on 2017-03-01

  3. Bek, J., Poliakoff, E., Marshall, H., Trueman, S., Gowen, E.: Enhancing voluntary imitation through attention and motor imagery. Exp. Brain Res. 234, 1819–1828 (2016)

    Article  Google Scholar 

  4. Bhattacharyya, S., Konar, A., Tibarewala, D.N.: Motor imagery, p300 and error-related eeg-based robot arm movement control for rehabilitation purpose. Med. Biol. Eng. Comput. 52, 2014 (1007)

    Google Scholar 

  5. Chen, S., Lai, Y.A.: Sgnal-processing-based technique for p300 evoked potential detection with the applications into automated character recognition. EURASIP. J. Adv. Signal Process. 152 (2014)

    Google Scholar 

  6. Choi, K.: Electroencephalography (eeg)-based neurofeedback training for brain-computer interface (bci). Exp. Brain Res. 231, 351–365 (2013)

    Article  Google Scholar 

  7. Corralejo, R., Nicolas-Alonso, L.F., Alvarez, D., Hornero, R.: A p300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Med. Biol. Eng. Comput. 52, 861–872 (2014)

    Article  Google Scholar 

  8. Czyżewski, A., Kostek, B., Kurowski, A., Szczuko, P., Lech, M., Odya, P., Kwiatkowska, A.: Assessment of hearing in coma patients employing auditory brainstem response, electroencephalography and eye-gaze-tracking. In: Proceedings of the 173rd Meeting of the Acoustical Society of America (2017)

    Google Scholar 

  9. Dickhaus, T., Sannelli, C., Muller, K.R., Curio, G., Blankertz, B.: Predicting bci performance to study bci illiteracy. BMC Neurosci. 10 (2009)

    Google Scholar 

  10. Diez, P.F., Mut, V.A., Avila Perona, E.M.: Asynchronous bci control using high-frequency. SSVEP. J. NeuroEngineering. Rehabil. 8(39) (2011)

    Google Scholar 

  11. Doud, A.J., Lucas, J.P., Pisansky, M.T., He, B.: Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE. 6(10) (2011)

    Google Scholar 

  12. Faller, J., Scherer, R., Friedrich, E., Costa, U., Opisso, E., Medina, J., Muller-Putz, G.R.: Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment. Front. Neurosci., 8 (2014)

    Google Scholar 

  13. Gardener, M., Beginning, R.: The statistical programming language, (2012). https://cran.r-project.org/manuals.html, Accessed on 2017-03-01

  14. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101, 215–220 (2000)

    Google Scholar 

  15. He, B., Gao, S., Yuan, H., Wolpaw, JR.: Brain-computer interfaces, In: He, B. (ed.) Neural Engineering, pp. 87–151 (2012). https://doi.org/10.1007/978-1-4614-5227-0_2

  16. Iscan, Z.: Detection of p300 wave from eeg data for brain-computer interface applications. Pattern Recognit. Image Anal. 21(481) (2011)

    Google Scholar 

  17. Janusz, A., Stawicki, S.: Applications of approximate reducts to the feature selection problem. In: Proceedings of the International Conference on Rough Sets and Knowledge Technology (RSKT), number 6954 in Lecture Notes in Artificial Intelligence, pp. 45–50 (2011)

    Google Scholar 

  18. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  19. Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)

    Google Scholar 

  20. Kasahara, T., Terasaki, K., Ogawa, Y.: The correlation between motor impairments and event-related desynchronization during motor imagery in als patients. BMC Neurosci. 13(66) (2012)

    Google Scholar 

  21. Kayikcioglu, T., Aydemir, O.: A polynomial fitting and k-nn based approach for improving classification of motor imagery bci data. Pattern Recognit. Lett. 31(11), 1207–1215 (2010)

    Article  Google Scholar 

  22. Krepki, R., Blankertz, B., Curio, G., Muller, K.R.: The berlin brain-computer interface (bbci) - towards a new communication channel for online control in gaming applications. Multimed. Tools Appl. 33, 73–90 (2007)

    Article  Google Scholar 

  23. Kumar, S.U., Inbarani, H.: Pso-based feature selection and neighborhood rough set-based classification for bci multiclass motor imagery task. Neural Comput. Appl. 33, 1–20 (2016)

    Google Scholar 

  24. LaFleur, K., Cassady, K., Doud, A.J., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface. J. Neural. Eng. 10 (2013)

    Google Scholar 

  25. Leeb, R., Pfurtscheller, G.: Walking through a virtual city by thought. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, (2004)

    Google Scholar 

  26. Leeb, R., Scherer, R., Lee, F., Bischof, H., Pfurtscheller, G.: Navigation in virtual environments through motor imagery. In: Proceedings of the 9th Computer Vision Winter Workshop, pp. 99–108, (2004)

    Google Scholar 

  27. Marple, S.L.: Computing the discrete-time analytic signal via fft. IEEE Trans. Signal Proc. 47, 2600–2603 (1999)

    Article  MATH  Google Scholar 

  28. Martin, B.: Instance-based learning: nearest neighbour with generalization. Technical report, University of Waikato, Department of Computer Science, Hamilton, New Zealand (1995)

    Google Scholar 

  29. Nakayashiki, K., Saeki, M., Takata, Y.: Modulation of event-related desynchronization during kinematic and kinetic hand movements. J. NeuroEng. Rehabil. 11(90) (2014)

    Google Scholar 

  30. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  31. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. of IEEE 89, 1123–1134 (2001)

    Article  Google Scholar 

  32. Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes, F.H.: Mu rhythm (de)synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage 31, 153–159 (2006)

    Article  Google Scholar 

  33. Postelnicu, C., Talaba, D.: P300-based brain-neuronal computer interaction for spelling applications. IEEE Trans. Biomed. Eng. 60, 534–543 (2013)

    Article  Google Scholar 

  34. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  35. Riza, S.L., Janusz, A., Slezak, D., Cornelis, C., Herrera, F., Benitez, J.M., Bergmeir, C., Stawicki, S.; Roughsets: data analysis using rough set and fuzzy rough set theories, (2015). https://github.com/janusza/RoughSets, Accessed on 2017-03-01

  36. Roy, S.: Nearest neighbor with generalization. Christchurch, New Zealand (2002)

    Google Scholar 

  37. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: Bci 2000: A general-purpose brain-computer interface (bci) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)

    Article  Google Scholar 

  38. Schwarz, A., Scherer, R., Steyrl, D., Faller, J., Muller-Putz, G.: Co-adaptive sensory motor rhythms brain-computer interface based on common spatial patterns and random forest. In: Proceedings of the 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), (2015)

    Google Scholar 

  39. Shan, H., Xu, H., Zhu, S., He, B.: A novel channel selection method for optimal classification in different motor imagery bci paradigms. BioMed. Eng. OnLine, 14 (2015)

    Google Scholar 

  40. Silva, J., Torres-Solis, J., Chau, T.: A novel asynchronous access method with binary interfaces. J. NeuroEng. Rehabil. 5(24) (2008)

    Google Scholar 

  41. Siuly, S., Li, Y.: Improving the separability of motor imagery eeg signals using a cross correlation-based least square support vector machine for brain computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 20(4), 526–538 (2012)

    Article  Google Scholar 

  42. Siuly, S., Wang, H., Zhang, Y.: Detection of motor imagery eeg signals employing naive bayes based learning process. J. Measurement 86, 148–158 (2016)

    Article  Google Scholar 

  43. Suh, D., Sang Cho, H., Goo, J., Park, K.S., Hahn, M.: Virtual navigation system for the disabled by motor imagery. In: Advances in Computer, Information, and Systems Sciences, and Engineering, pp. 143–148 (2006). https://doi.org/10.1007/1-4020-5261-8_24

  44. Szczuko, P., Lech, M., Czyżewski, A.: Comparison of methods for real and imaginary motion classification from eeg signals. In: Proceedings of ISMIS conference, (2017)

    Google Scholar 

  45. Szczuko, P.: Real and imagery motion classification based on rough set analysis of eeg signals for multimedia applications. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-017-4458-7

  46. Szczuko, P.: Rough set-based classification of eeg signals related to real and imagery motion. In: Proceedings Signal Processing Algorithms, Architectures, Arrangements, and Applications, (2016)

    Google Scholar 

  47. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: A user-friendly application for meg/eeg analysis. Comput. Intell. Neurosci. vol. 2011, Article ID 879716 (2011). https://doi.org/10.1155/2011/879716

  48. Tesche, C.D., Uusitalo, M.A., Ilmoniemi, R.J., Huotilainen, M., Kajola, M., Salonen, O.: Signal-space projections of meg data characterize both distributed and well-localized neuronal sources. Electroencephalogr. Clin. Neurophysiol. 95, 189–200 (1995)

    Article  Google Scholar 

  49. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley (1977)

    Google Scholar 

  50. Ungureanu, M., Bigan, C., Strungaru, R., Lazarescu, V.: Independent component analysis applied in biomedical signal processing. Measurement Sci. Rev. 4, 1–8 (2004)

    Google Scholar 

  51. Uusitalo, M.A., Ilmoniemi, R.J.: Signal-space projection method for separating meg or eeg into components. Med. Biol. Eng. Comput. 35, 135–140 (1997)

    Article  Google Scholar 

  52. Velasco-Alvarez, F., Ron-Angevin, R., Lopez-Gordo, M.A.: Bci-based navigation in virtual and real environments. IWANN. LNCS 7903, 404–412 (2013)

    Google Scholar 

  53. Vidaurre, C., Blankertz, B.: Towards a cure for bci illiteracy. Brain Topogr. 23, 194–198 (2010)

    Article  Google Scholar 

  54. Witten, I.H., Frank, E., Hall, M.A.: Data mining: Practical machine learning tools and techniques. In: Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (2011). www.cs.waikato.ac.nz/ml/weka/, Accessed Mar 1st 2017

  55. Wu, C.C., Hamm, J.P., Lim, V.K., Kirk, I.J.: Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. Exp. Brain Res. 234, 2133–2139 (2016)

    Article  Google Scholar 

  56. Xia, B., Li, X., Xie, H.: Asynchronous brain-computer interface based on steady-state visual-evoked potential. Cogn. Comput. 5(243) (2013)

    Google Scholar 

  57. Yang, J., Singh, H., Hines, E., Schlaghecken, F., Iliescu, D.: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55, 117–126 (2012)

    Article  Google Scholar 

  58. Yuan, H., He, B.: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans. Biomed. Eng. 61, 1425–1435 (2014)

    Article  Google Scholar 

  59. Zhang, R., Xu, P., Guo, L., Zhang, Y., Li, P., Yao, D.: Z-score linear discriminant analysis for EEG based brain-computer interfaces. PLoS ONE. 8(9) (2013)

    Google Scholar 

Download references

Acknowledgements

The research is funded by the National Science Centre of Poland on the basis of the decision DEC-2014/15/B/ST7/04724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szczuko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szczuko, P., Lech, M., Czyżewski, A. (2018). Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67588-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67587-9

  • Online ISBN: 978-3-319-67588-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics