Skip to main content

Neural Knowledge Tracing

  • Conference paper
  • First Online:
Brain Function Assessment in Learning (BFAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10512))

Included in the following conference series:

Abstract

Knowledge tracing aims to quantify how well students master the knowledge (tags) being tutored by analyzing their learning activities (e.g., coursework interaction data). It plays an important role in intelligent tutoring systems. In this paper, we cast knowledge tracing as a performance-prediction problem, which predicts the performances of students on exercises labeled by multiple knowledge tags, and propose to tackle this problem using Deep Learning techniques. We applied several Recurrent Neural Network architectures to model complex representations of student knowledge and predict future performances of students. Our experimental results demonstrate that the neural network architecture based on stacked Long Short Term Memory and residual connections give superior predictions on the future performances of learners. To model how a student answered a question that contains multiple knowledge tags, we explored three different variants to map knowledge states to prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-Dickstein, J.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)

    Google Scholar 

  3. Khajah, M., Lindsey, R.V., Mozer, M.C.: How deep is knowledge tracing? (2016). arXiv preprint arXiv:1604.02416

  4. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4(4), 253–278 (1994)

    Article  Google Scholar 

  5. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 855–868 (2009)

    Article  Google Scholar 

  6. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML, vol. 28(3), pp. 1310–1318 (2013)

    Google Scholar 

  7. Greff, Klaus, et al.: LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems (2016)

    Google Scholar 

  8. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). arXiv preprint arXiv:1409.0473

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Paszke: LSTM Implementation Explained (2015). http://apaszke.github.io/lstm-explained.html. 2016-07-15

  11. Rocktäschel, T., Welbl, J., Riedel, S.: Frustratingly Short Attention Spans in Neural Language Modeling. arXiv.org., February 15, 2017

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). doi:10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  13. Feng, M., Heffernan, N., Koedinger, K.: Addressing the assessment challenge with an online system that tutors as it assesses. User Modeling and User-Adapted Interaction 19(3), 243–266 (2009)

    Article  Google Scholar 

  14. Chollet, F.: Keras (2015)

    Google Scholar 

  15. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2016). arXiv preprint arXiv:1603.04467

  16. Kingma, D., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  17. Kim, Y.: Convolutional neural networks for sentence classification (2014). arXiv preprint arXiv:1408.5882

  18. Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, Joseph A., Conejo, R., Marzo, José L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22362-4_21

    Chapter  Google Scholar 

  19. Cohen, G.L., Garcia, J.: Identity, belonging, and achievement: A model, interventions, implications. Current Directions in Psychological Science 17(6), 365–369 (2008)

    Article  Google Scholar 

  20. Corbett, A.: Cognitive computer tutors: solving the two-sigma problem. In: Bauer, M., Gmytrasiewicz, Piotr J., Vassileva, J. (eds.) UM 2001. LNCS, vol. 2109, pp. 137–147. Springer, Heidelberg (2001). doi:10.1007/3-540-44566-8_14

    Chapter  Google Scholar 

  21. Baker, R.S.J.d., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, Beverley P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69132-7_44

    Chapter  Google Scholar 

  22. Khajah, M.M., Huang, Y., González-Brenes, J.P., Mozer, M.C., Brusilovsky, P.: Integrating knowledge tracing and item response theory: a tale of two frameworks. In: Proceedings of Workshop on Personalization Approaches in Learning Environments (PALE 2014) at the 22th International Conference on User Modeling, Adaptation, and Personalization, pp. 7–12. University of Pittsburgh (2014)

    Google Scholar 

  23. Khajah, M., Wing, R., Lindsey, R., Mozer, M.: Integrating latent-factor and knowledge-tracing models to predict individual differences in learning. In: Educational Data Mining 2014 (2014)

    Google Scholar 

  24. Olah, C.: Understanding lstm networks. GITHUB blog. Posted on August 27, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Sha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sha, L., Hong, P. (2017). Neural Knowledge Tracing. In: Frasson, C., Kostopoulos, G. (eds) Brain Function Assessment in Learning. BFAL 2017. Lecture Notes in Computer Science(), vol 10512. Springer, Cham. https://doi.org/10.1007/978-3-319-67615-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67615-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67614-2

  • Online ISBN: 978-3-319-67615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics