Skip to main content

Computers Cannot Learn the Way Humans Do – Partly, Because They Do not Sleep

  • Conference paper
  • First Online:
Brain Function Assessment in Learning (BFAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10512))

Included in the following conference series:

  • 1513 Accesses

Abstract

One of the current frontier research themes in informatics relates to the extent to which computers and machines in general can become capable of learning and teaching each other. Hopes have been raised that their education could benefit from emulating mechanisms underlying learning in animal brains. An overview of these mechanisms will be briefly presented with a focus on the recently revealed fundamental role of sleep in memory consolidation and learning., Compared to brains, computers are found very much inferior when it comes to learning. Several road signs are suggested for enriching computers’ repertory in the direction of increasing their capacity to learn by becoming more brain-like. However, the prospect of achieving such goal with state of art technology appears extremely dim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aton, S.J., Suresh, A., Broussard, C., Frank, M.G.: Sleep promotes cortical response potentiation following visual experience. Sleep. 37(7), 1163–1170 (2014). doi:10.5665/sleep.3830. PubMed PMID: 25061244; PubMed Central PMCID: PMC4098801

    Article  Google Scholar 

  2. Bruce, D.: Fifty years since Lashley’s In search of the Engram: refutations and conjectures. J. Hist. Neurosci. 10(3), 308–318 (2001). PubMed PMID: 11770197

    Article  MathSciNet  Google Scholar 

  3. Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L.: The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Annals of the New York Academy of Sciences 1124 (1), 1–38 (2008). PMID 18400922. doi:10.1196/annals.1440.011

  4. Camina, E., Güell, F.: The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins. Front Pharmacol. 30(8), 438 (2017). doi:10.3389/fphar.2017.00438. eCollection 2017. Review. PubMed PMID: 28713278; PubMed Central PMCID: PMC5491610

    Article  Google Scholar 

  5. Crunelli, V., Hughes, S.W.: The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat. Neurosci. 13(1), 9–17 (2010). doi:10.1038/nn.2445. Epub 2009 Dec 6. Review. PubMed PMID: 19966841; PubMed Central PMCID: PMC2980822.

    Article  Google Scholar 

  6. Diekelmann, S., Born, J.: The memory function of sleep. Nat. Rev. Neurosci. 11(2), 114–126 (2010). doi:10.1038/nrn2762. Epub 2010 Jan 4. Review. PubMed PMID:20046194.

    Google Scholar 

  7. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America 102 (27), 9673–9678 (2005). ISSN 0027-8424. PMC 1157105  . PMID 15976020. doi:10.1073/pnas.0504136102

  8. Freeman, W.J.: How Brains Make Up their Minds. Columbia University Press, New York (2001). 180 p.

    Google Scholar 

  9. Frith, C.: Wie unser gehirn die welt erschafft. Auslage 2010. Springer Spectrum, Heidelberg (2010)

    Google Scholar 

  10. Halasz, P., Bodizs, R.: Dynamic Structure of NREM Sleep. SpringerQ12 Science & Business Media (2013)

    Google Scholar 

  11. Hobson, J.A., Pace-Schott, E.F.: The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3(9), 679–693 (2002). Review. PubMed PMID: 12209117

    Article  Google Scholar 

  12. Hu, J., Ferguson, L., Adler, K., Farah, C.A., Hastings, M.H., Sossin, W.S., Schacher, S.: Selective Erasure of Distinct Forms of Long-Term Synaptic Plasticity Underlying Different Forms of Memory in the Same Postsynaptic Neuron. Curr. Biol. 27(13), 1888–1899.e4 (2017). doi:10.1016/j.cub.2017.05.081. Epub 2017 Jun 22. PubMed PMID: 28648820

  13. Ioannides, A.A., Corsi-Cabrera, M., Fenwick, P.B., del Rio Portilla, Y., Laskaris, N.A., Khurshudyan, A., Theofilou, D., Shibata, T., Uchida, S., Nakabayashi, T., Kostopoulos, G.K.: MEG tomography of human cortex and brainstem activity in waking and REM sleep saccades. Cereb. Cortex 14(1), 56–72 (2004). PubMed PMID: 14654457

    Article  Google Scholar 

  14. Ioannides, A.A., Kostopoulos, G.K., Liu, L., Fenwick, P.B.: MEG identifies dorsal medial brain activations during sleep. Neuroimage 44(2), 455–468 (2009). doi:10.1016/j.neuroimage.2008.09.030. Epub 2008 Oct 7. PubMed PMID: 18950718

    Article  Google Scholar 

  15. Ioannides, A.A., Liu, L., Poghosyan, V., Kostopoulos, G.K.: Using MEG to Understand the Progression of Light Sleep and the Emergence and Functional Roles of Spindles and K-Complexes Front. Hum. Neurosci., June 16, 2017. https://doi.org/10.3389/fnhum.2017.00313

  16. Ji, D., Wilson, M.A.: Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10(1), 100–107 (2007). Epub 2006 Dec 17. PubMed PMID: 17173043

    Article  Google Scholar 

  17. Kandel, E.R., Dudai, Y., Mayford, M.R.: The molecular and systems biology of memory. Cell. 157(1), 163–186 (2014). doi:10.1016/j.cell.2014.03.001.Review. PubMed PMID: 24679534

    Article  Google Scholar 

  18. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J.: Principles of Neural Science, 5th edn. McGraw-Hill, New York (2013). ISBN 978-0071390118

    Google Scholar 

  19. Kohavi, R., Provost, F.: Glossary of terms. Machine Learning 30, 271–274 (1998)

    Article  Google Scholar 

  20. Kokkinos, V., Kostopoulos, G.K.: Human non-rapid eye movement stage II sleep spindles are blocked upon spontaneous K-complex coincidence and resume as higher frequency spindles afterwards. J. Sleep Res. 20, 57–72 (2011). doi:10.1111/j.1365-2869.2010.00830.x

    Article  Google Scholar 

  21. Kokkinos, V., Koupparis, A.M., Kostopoulos, G.K.: An intra-K-complex oscillation with independent and labile frequency and topography in NREM sleep. Front. Hum. Neurosci. 26(7), 163 (2013). doi:10.3389/fnhum.2013.00163. eCollection 2013. PubMed PMID: 23637656; PubMed Central PMCID: PMC3636459

    Google Scholar 

  22. LeDoux, J.: Synaptic Self: How Our Brains Become Who We Are. Viking, January 2002. c.400p. index. ISBN 0-670-03028-7

    Google Scholar 

  23. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321–332 (2015). doi:10.1038/nrg3920. Epub 2015 May 7. Review. PubMed PMID: 25948244; PubMed Central PMCID: PMC5204302.

    Article  Google Scholar 

  24. Llinás, R.: I of the Vortex: From Neurons to Self. MIT Press, Cambridge (2001). ISBN 0-262-62163-0

    Google Scholar 

  25. Maquet, P.: The role of sleep in learning and memory. Science. Nov 2;294(5544):1048-52. Review. PubMed PMID: 11691982

    Google Scholar 

  26. Milner, B.: Psychological defects produced by temporal lobe excision. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 244–257 (1958). PubMed PMID: 13527787

    Google Scholar 

  27. Petrides, M.: The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research 133, 44–54 (2000)

    Article  Google Scholar 

  28. Ribeiro, S., Gervasoni, D., Soares, E.S., Zhou, Y., Lin, S.C., Pantoja, J., Lavine, M., Nicolelis, M.A.: Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol. 2(1), E24 (2004). Epub 2004 Jan 20. PubMed PMID: 14737198; PubMed Central PMCID: PMC314474

    Google Scholar 

  29. Siegel, J.M.: Clues to the functions of mammalian sleep. Nature 437(7063), 1264–1271 (2005)

    Google Scholar 

  30. Stein, S.: Traume: Eine Reise in unsere innere Wirklichkeit. S. Fisher Verlag GmbH (2014)

    Google Scholar 

  31. Stickgold, R.: Sleep-dependent memory consolidation. Nature 437(7063), 1272–1278 (2005). Review. PubMed PMID: 16251952.

    Article  Google Scholar 

  32. Tononi, G., Cirelli, C.: Sleep and synaptic down-selection. In: Buzsáki, G., Christen, Y. (eds.) Micro-, Meso- and Macro-Dynamics of the Brain [Internet]. Cham (CH). Springer (2016). http://www.ncbi.nlm.nih.gov/books/NBK435759/. PubMed PMID: 28590688

  33. Walker, M.P.: The role or sleep in cognition and emotion. Annals of New York Academy of Sciences 1156(1), 168–197 (2009)

    Google Scholar 

  34. Yang, G.: Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Kostopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kostopoulos, G.K. (2017). Computers Cannot Learn the Way Humans Do – Partly, Because They Do not Sleep. In: Frasson, C., Kostopoulos, G. (eds) Brain Function Assessment in Learning. BFAL 2017. Lecture Notes in Computer Science(), vol 10512. Springer, Cham. https://doi.org/10.1007/978-3-319-67615-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67615-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67614-2

  • Online ISBN: 978-3-319-67615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics