
Tuning and optimization for a variety of
many-core architectures without changing a
single line of implementation code using the

Alpaka library?

Alexander Matthes1,2, René Widera1, Erik Zenker3, Benjamin Worpitz3, Axel
Huebl1,2, and Michael Bussmann1

1 Helmholtz-Zentrum Dresden – Rossendorf
2 Technische Universität Dresden

3 LogMeIn, Inc.

Abstract. We present an analysis on optimizing performance of a single
C++11 source code using the Alpaka hardware abstraction library. For
this we use the general matrix multiplication (GEMM) algorithm in order
to show that compilers can optimize Alpaka code effectively when tuning
key parameters of the algorithm. We do not intend to rival existing,
highly optimized DGEMM versions, but merely choose this example to
prove that Alpaka allows for platform-specific tuning with a single source
code. In addition we analyze the optimization potential available with
vendor-specific compilers when confronted with the heavily templated
abstractions of Alpaka. We specifically test the code for bleeding edge
architectures such as Nvidia‘s Tesla P100, Intel‘s Knights Landing (KNL)
and Haswell architecture as well as IBM‘s Power8 system. On some of
these we are able to reach almost 50% of the peak floating point operation
performance using the aforementioned means. When adding compiler-
specific #pragmas we are able to reach 5 TFLOPs/s on a P100 and over 1
TFLOPs/s on a KNL system.

1 Introduction

1.1 Motivation

We have developed Alpaka [28] due to our own need in programming highly effi-
cient algorithms for simulations [27] and data analysis on modern hardware in a

? This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No 654220. This project received
funding within the MEPHISTO project (BMBF-Förderkennzeichen 01IH16006C).
Research leading to these results has in parts been carried out on the Human Brain
Project PCP Pilot System JURON at the Juelich Supercomputing Centre, which
received co-funding from the European Union (Grant Agreement no. 604102). We
thank for the access to and support for the HPC cluster Taurus at the Centre for
Information Services and High Performance Computing (ZIH), Technical Univer-
sity Dresden, as well as the cluster Hypnos at the Helmholtz-Zentrum Dresden –
Rossendorf.

ar
X

iv
:1

70
6.

10
08

6v
1

 [
cs

.D
C

]
 3

0
Ju

n
20

17

portable manner. The aim of our approach is to have a single C++ source code
in which we can express all levels of parallelism available on modern compute
hardware, using a parallel redundant hierarchy model similar to that found in
CUDA or OpenCL. Taking a look at the recent top ten high performance com-
puting (HPC) systems [16], it becomes clear that many-core architectures and
heterogeneous systems are dominating the landscape and will continue to do so.

The main design goal of Alpaka is to describe all levels of parallelization
available on modern heterogeneous hardware. It neither makes assumptions on
the memory layout or access patterns, nor does it handle the underlaying resource
and event management of the whole application, nor does it abstract the inter-
node communication.

Our open-source projects PIConGPU [3,2] and HaseOnGPU [5] both use
Alpaka for the kernel abstraction for various many-core hardware [27,28], but
different libraries for the mentioned topics not handled by Alpaka, like Gray-
bat [26] for the network communication, mallocMC for the memory manage-
ment or libPMacc for containers and asynchronous event handling. Alpaka is not
meant as full grown solution for developing or porting whole HPC applications,
but as a single-purpose library that can easily be included into the individual
software of an exiting HPC project. We have chosen to provide a lightweight, yet
powerful C++ meta programming library for coherently expressing parallelism
for a large variety of many-core platforms.

Modern C++11 template programming enables us to implement an abstrac-
tion layer between the application and the various, often vendor-specific pro-
gramming models available for programming many-core hardware. With mod-
ern compilers the abstraction layer is completely resolved during compilation,
leaving only efficient code in the binary.

While performance portability and close-to-zero overhead of Alpaka code
could be shown in previous work [28] we will here concentrate on a subject
important for high performance computing, namely optimization of code for
various hardware platforms by means of tuning and vendor-specific compiler
optimizations while maintaining a single-source, portable code. The presence of
architecture independent parameters outside the algorithm implementation itself
may also enable auto-tuning in a later step.

We will show that indeed parameter tuning and compiler optimization gen-
erate highly efficient code on various platforms. However, we will discuss some
pitfalls of this approach that arise due to limiting tuning parameters to a small
number and due to the lack of full support for C++11 in some vendor compilers.

1.2 Alpaka

Alpaka allows for a multidimensional, hierarchical abstraction of computation
hardware as seen in Fig. 1. Kernels are written and run as threads executed in
a task parallel manner. Threads are organized in blocks, which themselves are
organized in grids. Every thread inside a block is assumed to run in parallel to
the other threads in the same block, enabling intra-block synchronization. Blocks
on the other hand may run concurrently or sequentially inside a grid. Every

Pa
ra

lle
l

Synchronize

Sequential

Global
Memory

Shared
Memory

Register Memory

Register Memory

Host
Memory

Grid Block Thread Element

Fig. 1. Systematic view of the abstract redundant parallel hierarchy model of Alpaka
taken from [28]. A compute device works on a grid, inside this grid are blocks. Every
block has the same amount of threads, which are defined by the user as kernels. Ex-
plicit looping over elements inside the kernel enables autovectorization but also gives a
better utilization for simple kernels. For each computation layer Alpaka introduces an
appropriate memory layer. The copies between those are explicit (depicted as arrows).

execution layer has a corresponding memory hierarchy level. In addition to task-
parallel execution Alpaka introduces an element layer inside the thread level for
data-parallel execution, where the same instruction or program is executed for
multiple data. This latter level is usually used for expressing vectorization.

For any given hardware, these layers are mapped onto the hardware using a
suitable back end. As such, Alpaka does not implement any functionality beyond
this mapping and the underlying optimizations come form the back end and
mapping chosen for a specific hardware.

Alpaka currently supports Nvidia’s CUDA [23], OpenMP [4] 2 and 4, Boost
Fibers and C++Threads as back ends. Furthermore, we have started to add
OpenACC [24] and Thread Building Blocks [11] (TBB) support, while support
for AMD HIP [1] is foreseen for the near future. Alpaka has two accelerators
using OpenMP 2: One is running blocks in a grid concurrently, the other one
threads inside a block. For the first one only one thread per block is allowed.
With the same constraint it is possible to run the code sequentially with Alpaka.

In the scope of this paper we will restrict ourselves to the OpenMP 2 Blocks
and Nvidia CUDA back ends so that we are able to compare our new results to
our previous work. Although OpenCL [7] is widely supported, it is not suitable
as Alpaka back end, as it is not single source C++. SYCL [13,25] has the goal
to close this gap and will probably be considered in the future. C++ AMP [17]
looks similarly promising, but fails in support of current HPC architectures.

Alpaka leaves performance enhancements due to data layout to the user or
another, independent library. Memory in Alpaka thus is always represented by a
plain pointer. This strategy leaves room for optimization, but currently requires
more development effort by the user.

Optimized memory access patterns are as important for achieving perfor-
mance as expression of algorithmic parallelism and we have carefully chosen the
example GEMM algorithm as it is simple enough to go without memory abstrac-
tion. However, optimizing memory access and memory copies is outside the scope
of Alpaka, which distinguishes our approach from the design goals of libraries
such as Kokkos [6] or RAJA [10] that aim for providing a full software environ-
ment for portable programming of many-core architectures. A separate memory
access abstraction library is planned, but will be an independent, orthogonal
part of the already mentioned software stack.

2 The Alpaka general matrix multiplication
implementation

Similar to [28] we use a general matrix multiplication (GEMM) example

C = α ·A ·B + β · C (1)

for performance tuning, as it allows for tiling without the need for changing the
memory representation of the matrices.

For the sake of simplicity we choose A, B and C to be quadratic matrices
with N rows and columns each. The total number of floating point operations
then follows as

O(N) = 3N2 + 2N3 ≈ 2N3 . (2)

The number of elements per thread e and threads per block t result in the
number of blocks in the grid

B(e, t) =
N

t · e
, (3)

whereby t = 1 for the OpenMP 2 Blocks and the sequential accelerator.
We measure the time t in seconds for the run of the algorithm without copy

operations to device memory, keeping the maximum over ten runs. With this we
calculate the performance P in GFLOPs/s as

P(N, t) =
O(N)

t
· 10−9 =

2N3

t
· 10−9 . (4)

2.1 Tiled GEMM algorithm

There exist many highly optimized GEMM implementations, reaching up to
90 % [14] of the theoretical peak performance. The solution depicted here is not
intended to compete with these algorithms. Instead, it serves as a code example
reasonably designed to exploit parallelism on many-core hardware. As such, it
already achieves 20 % of the peak performance without tuning, which is a value
regularly found in applications. In the following, we aim to show that Alpaka
allows for platform specific tuning by parameter tuning without specializing the

Matrix A Matrix B Matrix C

Outer loop over tiles

tile size T

Current tile in outer loop

Inner loop over elements

Current element in inner loop

matrix size N

Temporary result tile

Fig. 2. Performance critical A ·B part of the GEMM using a tiling strategy. A thread
iterates over smaller sub matrices (tiles) in A and B (purple), performs the matrix
multiplication per tile using the element layer (green) for vectorization, and adds it to
a temporary thread local C tile (orange). The remaining part of the GEMM algorithm
using the temporary C tile needs to load and write the C matrix only once (streaming),
thus it doesn’t need to be cached.

implementation. As long as the tiles of the two matrices A, B fit completely in the
cache memory, increasing the tile size will usually result in better performance.
Based on the size S in bytes of the data type used (single or double precision)
the required cache size K is

K(S, T) = 2T 2S . (5)

The tiling matrix multiplication has Nblocks = N/T tiles in each matrix di-
mension. For every tile of C Nblocks tiles of A and B need to be loaded (see Fig.
2). Furthermore the C tile itself needs to be loaded, leading a total number of

M(N,T) = N2
blocks(2T

2Nblocks + T 2) = 2
N3

T
+N2 = N2

(
2
N

T
+ 1

)
(6)

memory operations, which gives us the ratio of compute to memory operations
as

R(N,T) =
O(N)

M(N,T)
=

2N3

N2(2N
T + 1)

=
2N

(2N
T + 1)

=
2N

2N+T
T

=
2NT

2N + T
(7)

with lim
N→∞

R(N,T) = T , showing again that larger tile sizes are preferable

With cache hierarchies present in most modern architectures, it is not triv-
ially predictable for which cache T should be optimized. We thus chose to cal-
culate one tile of the matrix C per Alpaka block. Every element in the block

1 // Class for optimal tile size depending on the Accelerator type
2 template < typename T_Acc >
3 struct OptimalVectorSize {
4 using type = alpaka ::dim::DimInt <1u>;
5 };
6 // Number of elements per tiles predefined , but changeable as compiler option
7 #ifndef GPU_ELEM_NUM
8 #define GPU_ELEM_NUM 2u
9 #endif

10 #ifndef OMP_ELEM_NUM
11 #define OMP_ELEM_NUM 256u
12 #endif
13 // Specialization of the tile size type for CUDA , steered by GPU_ELEM_NUM
14 #ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
15 template < typename ... T_Args >
16 struct OptimalVectorSize < alpaka ::acc:: AccGpuCudaRt < T_Args ... > > {
17 using type = alpaka ::dim::DimInt <GPU_ELEM_NUM >;
18 };
19 #endif
20 // Specialization for OpenMP Blocks , steered by OMP_ELEM_NUM
21 #ifdef ALPAKA_ACC_CPU_B_OMP2_T_SEQ_ENABLED
22 template < typename ... T_Args >
23 struct OptimalVectorSize < alpaka ::acc:: AccCpuOmp2Blocks < T_Args ... > > {
24 using type = alpaka ::dim::DimInt <OMP_ELEM_NUM >;
25 };
26 #endif
27 // Easily extensible macro for every independent loop
28 #define VECTOR_PRAGMA \
29 _Pragma ("ivdep") \
30 _Pragma ("GCC ivdep")

Listing 1.1. Settings for the tiled matrix multiplication. OptimalVectorSize::type::
value represents the tile size T . The parameters and the loop #pragmas can directly
be used inside the kernel.

calculates one entry in the C tile. We use a two dimensional indexing for the par-
allelization levels. Every element stores the partial result of α ·A ·B in element
local memory. Depending on the architecture, we can increase the number of
elements per block by increasing the number of threads per block, which makes
sense for GPUs, or the number of elements per thread, which should enable
autovectorization for CPUs.

We implement the tile size T as an accelerator dependent class as seen in
Listing 1.1, thus avoiding mixing tuning and kernel parameters. It is set via
#define, thus making tuning easier. The matrix sizes N are passed as kernel
parameters (not shown).

2.2 Architectures

We test Nvidia K80 and P100 GPUs. The K80 and the PCIe version of the P100
are hosted in the cluster Hypnos at the Helmholtz-Zentrum Dresden – Rossendorf
whereas an nvlink using version of the P100 is part of the OpenPower pilot
system JURON at the Jülich Supercomputing Center. All GPU architectures
considered in this paper are listed in Tab. 1.

Vendor Nvidia

Architecture K80 P100

Interconnect to host PCIe nvlink PCIe

Number of SMs 13 [21] 56 [22]

Cores per SM
SP 192 [21] 64 [22]

DP 64 [21] 32 [22]

Shared memory per SM 112 KB [21] 48 KB [22]

Registers per SM (32 Bit) 131,072 [21] [22]

Clock frequency
0.88 Ghz

1.48 Ghz 1.39 Ghz
(Boost clock)

Theoretical peak SP 4.37 TFLOPs/s [19] 10.6 TFLOPs/s [20] 9.3 TFLOPs/s [20]

performance DP 1.46 TFLOPs/s [19] 5.3 TFLOPs/s [20] 4.7 TFLOPs/s [20]

Release date Q4/2014 Q4/2016

Table 1. Single (SP) and double (DP) precision peak performances and other char-
acteristic variables of GPUs considered in this paper. Notice that the P100 connected
via nvlink has a higher frequency and thus a higher theoretical peak performance. The
K80 has two GPU chips on one board of which we use only one. The cores of GPUs
are grouped in Streaming Multiprocessors (SMs) similar to CPU sockets.

As modern GPUs can directly access host CPU memory, we test both manual
offloading and Nvidia unified memory. For the first case we do not measure the
time for explicit memory transfer between CPU and GPU. Be aware that memory
handling is not part of Alpaka and native vendor code is used when necessary.
We thus focus on measuring algorithmic performance while disregarding analysis
of e.g. efficient latency hiding when offloading code to an accelerator.

Intel Xeon E5-2680 v3 (Haswell) and Xeon Phi Knights Landing (KNL) ar-
chitectures are hosted on the HPC cluster Taurus located at Technical University
Dresden whereas the Power8 processor is also part of the HPC pilot system JU-
RON. The CPU architectures considered in this paper are listed in Tab.2.

Clock frequency f , FLOP per cycle and core o, and number of cores n give
the theoretical peak performance

P(f, o, n) = f · o · n . (8)

The Haswell CPU does not have hyperthreading activated and has two AVX
units per core, which allows for instruction level parallelism and thus up to
64 single precision floating point operations (FLOPs) per cycle and clock. For
measurements we use 2 sockets resulting in a total amount of 24 cores. The
KNL architecture allows for up to 128 single precision floating point operations
per cycle and core. With hyperthreading activated this architecture can be used
similar to a multi-core CPU with 256 independent threads. The IBM Power8
processor has a uniquely high CPU frequency of 4 Ghz, but the lowest peak
performance of all tested systems. However, with 8 hardware threads per core,
160 independent tasks can be executed without a context switch, allowing for
high levels of parallelism.

We test different compilers for most architectures, see Tab. 3. The GNU
compiler is used as a reference available for all architectures and for GPUs to
compile the steering host code.

Vendor and architecture
Intel Xeon Intel Xeon Phi™ IBM

E5-2680 v3 (Haswell) CPU 7210 (KNL) Power8

Used sockets 2 1 2

Total number of cores n 24 64 20

Hardware threads per core 1 4 8

Clock frequency f
2.1 Ghz (AVX

1.3 Ghz 4.02 Ghz
base frequency [18])

FLOP per cycle SP 64 (2·AVX,FMA) 128 (2·AVX-512,FMA) 16 [9]

and core o DP 32 (2·AVX,FMA) 64 (2·AVX-512,FMA) 8 [9]

Theoretical peak SP 1.61 TFLOPs/s 5.33 TFLOPs/s 1.29 TFLOPs/s

performance (8) DP 0.81 TFLOPs/s 2.66 TFLOPs/s 0.64 TFLOPs/s

Cache sizes L1 64 KB (core)

reducing the L2 256 KB (core) 1 MB (2 cores) 512 KB (core)

memory latency L3 30 MB (socket) – 80 MB (socket)

Release date Q3/2014 Q2/2016 Q2/2014

Table 2. Single (SP) and double (DP) precision theoretical peak performances (see
Eq. 8) and other characteristic variables of CPUs considered in this paper. Performance
gains come mostly from vector operations and fused multiply adds, especially for Intel
CPUs, and higher clock frequencies when running on Power8.

2.3 Single source code file vs. optimization

As pointer alignment and dependencies cannot be known at compile time, au-
tovectorization needs some hints from developer side. As pointed out, applica-
tions or additional libraries can provide additional information on data types
that fosters autovectorization when using Alpaka. We thus are forced to add
compiler dependent #pragmas, namely #pragma ivdep and #pragma GCC ivdep

for the Intel and GNU C++ compilers, respectively, in order to declare pointers
inside loops as independent and executable in parallel. Furthermore, all mem-
ory is aligned to a multiplier of 64 with __declspec(align(64)) (Intel) and
__attribute__ ((aligned (64))) (GNU compiler), which makes it faster to
load whole chunks of memory to vector registers on some architectures. As one
cannot pass this information via function parameters, we also explicitly tell the
compilers about this in the most time critical loop over the A and B tiles with
__assume_aligned (Intel) and __builtin_assume_aligned (GNU).

XL C++ work around Alpaka is a very demanding C++ code and most com-
pilers fully support C++11, with the exception of the IBM XL compiler. For this
reason we move the most performance critical code, the matrix multiplication
of tiles in A and B, to an extra C file for every XL test and compile all C code
with the XL compiler, while the C++ code including all Alpaka abstractions
is compiled with the GNU C++ compiler. This means that we are not testing
XL’s OpenMP implementation. With full C++11 support by the IBM compiler
we expect similar to better performance than we see with this approach. This
workaround currently breaks our single source goal and prevents code optimiza-
tions like code inlining, but still helps to improve performance compared to using
just the GNU compiler.

Intel Compiler CUDA XL Compiler GNU Compiler

Haswell
-Ofast -xHost

(Version: 17.0.0)
– –

-Ofast -mtune=native

-march=native

(Version: 6.2)

KNL
-Ofast -xHost

(Version: 17.0.0)
– –

-Ofast

-mtune=native

-march=native

(Version: 6.2)

Tesla P100 –
--use_fast_math

(Version: 8.0.44)
–

-mtune=native -march=native

(Version: 5.3, only host)

Tesla K80 –
--use_fast_math

(Version: 8.0.44)
–

-mtune=native -march=native

(Version: 5.3, only host)

Power8 – –

-O5

(Version: 14.01)

(Only for C!)

-Ofast -mtune=native

-mcpu=native -mveclibabi=mass

(Version: 6.3)

Table 3. Compilers, compiler options, and compiler versions considered for every ar-
chitecture in this paper. Every binary is compiled on the same system it is run on later,
allowing for architecture- and system-aware compiler optimization.

KNL specific parameter settings The Intel KNL is programmable similarly
to a CPU, but like an offloading acceleration device it brings its own dedi-
cated memory called MCDRAM. Compared to the global RAM the latency is
almost the same, but the bandwidth around five times higher with over 450 GB/s
([12], p. 20). The Intel KNL supports three modes of accessing the MCDRAM:
As a cache for RAM, directly accessed (flat memory) or a hybrid mode, where a
part is used as cache and another part as flat memory. The first two modes are
compared in performance, as they form opposite cases. The Intel KNL can fur-
thermore be operated in different cluster modes, which may improve the cache
latency. In this paper we restrict ourselves to using quadrant mode only.

Multidimensional parameter tuning We choose T and the number of hard-
ware threads as tuning parameters before running scaling tests for different ma-
trix sizes N . Tuning is performed for a fixed N = 10240 as a good compromise
between runtime and problem size and further for an arbitrary N = 7168, thus
avoiding effects only occurring at some certain combinations of parameters. After
finding optimal parameter sets scaling tests with matrix sizes from N = 1024 up
to N = 20480 with an increment of ∆N = 1024 are performed. We repeat every
measurement first 5 than 10 times, which in all cases yield the same maximum
result. This shows that any effects visible are not due to statistics, and we thus
refrain from averaging over more measurements.

3 Parameter Tuning

As hyperthreading is deactivated for the Haswell CPU and as we have found an
efficient number of threads e = 162 for Nvidia GPUs in previous work, only the
tile size T is used for tuning for these architectures, see Fig. 3. An obvious obser-

1 2 4 8

50

100

200

500

1000

2000

5000

tile size T

a
ch

ie
v
e
d

G
F
L
O

P
s /

s

Tuning for P100 and K80

P100 (float,nvlink)

P100 (double,nvlink)

P100 (float,pcie)

P100 (double,pcie)

K80 (float)

K80 (double)

16 32 64 128 256

50

100

200

500

tile size T

a
ch

ie
v
e
d

G
F
L
O

P
s /

s

Tuning for Haswell

Haswell (float,icc)

Haswell (float,gcc)

Haswell (double,icc)

Haswell (double,gcc)

Fig. 3. Achievable GFLOPs/s for Nvidia K80 and P100, and for Intel Haswell depending
on the compiler, the floating point precision and the chosen tile size of the GEMM
algorithm. As there are not lesser cores than hardware threads, all of them are used.

vation for Haswell is that doubling the tile size often also doubles the achieved
performance, while T = 4 seems to be optimal for current GPU generations.

Tuning for KNL and Power8 adds the number of hardware threads as a second
parameter, see Fig. 4 for KNL. We see that optimal parameter combinations
highly depend on the chosen precision and compiler. The double precision binary
created by the Intel compiler using a single hardware thread results in best
performance of 510 GFLOPs/s. We also do a measurement for the KNL in flat
memory mode directly using the MCDRAM instead of the caching mechanism.
Except for a slightly better performance (∼ 2%), the results are the same.

For Power8 we test from T = 16 up to T = 512 and from one to eight
hardware threads always using only powers of two as parameters similar to KNL
(not shown). Contrary to KNL, optimization for the Power8 architecture deliver
similar performance results for a variety of parameters even when using the IBM
XL compiler. We don’t see large deviations from our tuning results for the control
case N = 7168 (not shown) on all architectures. Although bigger matrix sizes
improve the GFLOPs/s slightly, optimum parameters remain the same.

Tuning results are found in Tab. 4, while the corresponding mapping of Al-
paka parallel hierarchies to hardware in the case of double precision and vendor
compilers selected is presented in Fig. 5.

4 Results of the scaling

Fig. 6 and 7 show the achieved GEMM GFLOPs/s for all architectures consid-
ered, for both double and single precision and optimum parameter sets [15]. The
Nvidia P100 as expected shows the best absolute performance in all cases, while

G
N
U

C
o
m
p
il
e
r

In
te

l
C
o
m
p
il
e
r

Single precision

16 32 64 128 256

1

2

4

197

288

338

352

593

636

866

1 156

818

929

963

816

737

406

161

Tile size T

H
a
rd

w
a
re

th
re

a
d
s

p
e
r

c
o
re

200

400

600

800

1,000

A
ch

ie
v
e
d

G
F
L
O

P
s /

s

16 32 64 128 256

1

2

4

60

95

126

123

190

243

284

401

413

451

576

572

593

426

164

Tile size T

H
a
rd

w
a
re

th
re

a
d
s

p
e
r

c
o
re

Double precision

16 32 64 128 256

1

2

4

141

201

282

314

416

197

510

439

371

377

363

163

199

86

79

Tile size T

H
a
rd

w
a
re

th
re

a
d
s

p
e
r

c
o
re

100

200

300

400

500

A
ch

ie
v
e
d

G
F
L
O

P
s /

s

16 32 64 128 256

1

2

4

46

78

108

117

177

200

221

277

271

301

334

193

116

88

79

Tile size T
H

a
rd

w
a
re

th
re

a
d
s

p
e
r

c
o
re

Fig. 4. Achievable GFLOPs/s for Intel Xeon Phi Knights Landing (KNL) depending
on the compiler, the floating point precision, the chosen tile size of the tiled ma-
trix multiplication algorithm and the used hardware threads per core. The bigger
the mark size the higher the achieved GFLOPs/s. The mark radius is calculated with

(achieved GFLOPs/s)
5/7 as this has been shown a good value for human perception [8].

GNU compiler 6.2 and Intel compiler 17 are used. For compiler options see Tab. 3.

the Power8 runtime is surprisingly faster than the K80 although the Nvidia GPU
has a higher theoretical peak performance than the IBM CPU. The KNL shows a
drastic drop in peak performance every second or fourth measurement beginning
with N = 8192 for both precisions, regardless of using cached or flat memory
when using the Intel compiler. To investigate this issue a test with N = 8192 is
run in double precision but 91 hardware threads. With this we get 490 GFLOPs/s
instead of 303 GFLOPs/s (64 threads), which is only 7% less than for N = 7168
and N = 9216 (both 527 GFLOPs/s).

Most architectures show an increase in the performance for higherN , with the
exception of Intel Haswell which for single precision shows best peak performance
(665 GFLOPs/s) for N = 2048 and afterwards decreases reaching a plateau at 400
GFLOPs/s. In contrast to our expectations, all GPUs show a better performance
when using unified memory instead of device memory, especially for small N .

In order to compare results Fig. 8 shows the relative peak performance for
the best parameter combinations for every architecture and single and double
precision. For architectures investigated in 2016 [28], we find similar or only
slightly better performance. But whereas the last paper has stated a general
performance around 20% the most recent systems are now capable to reach
almost 50% of the peak performance using Alpaka.

IBM Power8 Intel KNL

Nvidia Tesla P100

Fig. 5. Alpaka mappings for IBM’s Power8, Intel’s KNL, and Nvidia’s Tesla P100. Ev-
ery mapping uses the optimal parameters of the parameter tuning for double precision
and the vendor compiler from Tab. 4. The CPU mappings use the OpenMP2 Block
back end. The GPU mapping uses the CUDA back end and unified memory.

Architecture Compiler
Preci- HW Optimized K(S, T) Cache per HW thread

sion Threads tile size T (see (5)) L1 L2 L3

P100 (nvlink)

CUDA

single

–

4 128 B

– – –

double 4 256 B

P100 (pci)
single 4 128 B

double 4 256 B

K80
single 4 128 B

double 2 64 B

Haswell

Intel
single

1

64 32 KB 64 KB 256 KB 2.5 MB

double 128 256 KB 64 KB 256 KB 2.5 MB

GNU
single 128 128 KB 64 KB 256 KB 2.5 MB

double 128 256 KB 64 KB 256 KB 2.5 MB

KNL

Intel
single 2 64 32 KB 32 KB 256 KB

–
double 1 64 64 KB 64 KB 512 KB

GNU
single 1 256 512 KB 64 KB 512 KB

double 2 128 256 KB 32 KB 256 KB

Power8

XL
single 2 512 2 MB 32 KB 256 KB 4 MB

double 2 512 4 MB 32 KB 256 KB 4 MB

GNU
single 8 256 512 KB 8 KB 64 KB 1 MB

double 4 256 1 MB 16 KB 128 KB 1 MB

Table 4. Estimated optimal tile size T and number of hardware (HW) threads. Memory
for A and B tiles K(S, T) (Eq. 5) and the available cache per HW thread and cache
level are listed in addition. The first cache level that can hold a complete tile is marked.

5 Analysis

Autovectorization Listing 1.2 shows the dissembled KNL binary built by the
Intel compiler for the most inner and performance critical loop of the tiling
matrix multiplication kernel. C++ code is marked blue, assembler code red.
With vfmadd231pd being the fused multiply add vector function working on
AVX-512 vectors (zmm*) and loop unrolling we find that the Intel compiler is
capable of optimizing the inner loop despite the heavy templated Alpaka code.

Parameter tuning We assume that tuning for KNL resulted in best FP per-
formance using one hardware thread (see Fig. 4) because larger tiles then fit best
into the L2 cache of 512 KB, which otherwise would have to be shared between
threads. This is supported by the fact that using double precision often requires
smaller tile sizes than single precision. Fig. 3 shows the element layer with T = 4
causing performance gain, especially for the P100, as it has more shared memory
and registers available per thread than the K80.

Scaling Most architectures show poor performance for small matrix sizes N ≤
2048 which at first glance could be blamed on under-utilization, although at
closer look is questionable e.g. in case of the KNL which performs 2×109 floating
point operations that clearly dominate over memory operations following Eq. 7.

We found the KNL in flat memory mode to be only about ∼ 2% faster than
in cached memory mode, except for very small N , which can be explained by
the fact that the same memory is needed very often, but needs to be copied from

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

11
26

4

12
28

8

13
31

2

14
33

6

15
36

0

16
38

4

17
40

8

18
43

2

19
45

6

20
48

0

20

50

100

200

500

1000

2000

P100 (nvlink,unified memory) P100 (nvlink,explicit copy)

P100 (pcie,unified memory) P100 (pcie,explicit copy)

KNL (icc) KNL (gcc)

KNL (flat memory,icc) KNL (flat memory,gcc)

K80 (unified memory) K80 (explicit copy)

Power8 (xl) Power8 (gcc)

Haswell (icc) Haswell (gcc)

matrix size N

A
ch

ie
v
ed

G
F
L
O
P
s /

s

Fig. 6. Achievable GFLOPs/s for all considered architectures for double precision de-
pending on the matrix size and the compiler.

RAM to MCDRAM only once. In all cases, using RAM only is much slower that
using MCDRAM. We see performance degradation on KNL for (almost) every
second N (DP) and for every fourth N (SP) starting with N = 8192, except for
N = 14336 (flat memory, DP). When choosing an uneven number of 91 hardware
threads, performance improves for N = 8192 (DP). As the issue always appears
on very even numbers we assume that the KNL has performance issues if many
hardware threads access the very same memory location at the same time. As
this issue does not occur for the GNU compiler, we suspect Intel’s optimized
OpenMP implementation to cause this.

The K80’s relative peak performance is only around 15% for single precision
(SP) and around 18% for double precision (DP) whereas the P100 reaches 46%
(SP) and 28% (DP). As loading to shared memory is not optimally realized, we
attribute this difference to the P100 having more registers per thread and more
shared memory than the K80, thus more blocks can run concurrently which bet-
ter hides memory latencies. Although SP values need half the space of DP the
K80 has three times more SP units than DP, thus the SP version needs to load
more memory for all scheduled blocks, which leads to performance degradation,
which is not the case for the P100 with only two times more SP than DP units.
Another problem of the algorithmic implementation (but not of Alpaka) is that
the index arithmetics lead to a unfavorable ratio of integer to floating point oper-
ations, thus degrading FPU utilization. We emphasize that platform-dependent
memory access optimizations are within the responsibility of the user code when
using Alpaka.

The Haswell architecture shows a different behavior than all other systems
for SP where the peak performance has its peak at N = 2048 and then slowly
decreases. For N = 2048 matrices A and B use only 32 MB which fits into the
L3 cache of one Haswell CPU (see Tab. 3 2), thus accelerating memory access.

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

11
26

4

12
28

8

13
31

2

14
33

6

15
36

0

16
38

4

17
40

8

18
43

2

19
45

6

20
48

0

20

50

100

200

500

1000

2000

P100 (nvlink,unified memory) P100 (nvlink,explicit copy)

P100 (pcie,unified memory) P100 (pcie,explicit copy)

KNL (icc) KNL (gcc)

KNL (flat memory,icc) KNL (flat memory,gcc)

K80 (unified memory) K80 (explicit copy)

Power8 (xl) Power8 (gcc)

Haswell (icc) Haswell (gcc)

matrix size N

A
ch

ie
v
ed

G
F
L
O
P
s /

s

Fig. 7. Achievable GFLOPs/s for all considered architectures for single precision depend-
ing on the matrix size and the compiler.

6 Conclusion

Within the scope of this work we have shown that portable single-source C++11
code using Alpaka can run on current many-core architectures without chang-
ing any line inside the algorithmic relevant part of the source code, seeing good
floating point performance for the most recent systems when reasonably design-
ing the code for exploiting many-core parallelism. We find that optimizing the
number of hardware threads and the tile size for a simple GEMM algorithm
leads to considerable increase in performance that can be well explained by the
architectural characteristics and is independent of the Alpaka abstractions.

This becomes evident when analyzing the effects of vendor-specific compiler
optimization. These do not only show that expected optimizations such as au-
tovectorization, loop unrolling and the use of fused multiply adds are performed
using Alpaka but that for bleeding edge hardware like Intel KNL, Nvidia P100
and IBM Power8 using vendor compilers gives a significant boost in performance.

When using vendor-specific compilers with appropriate optimization flags
and #pragma statements we are able to come close to 50% of the expected peak
floating point performance on the Nvidia P100 and IBM Power8 architectures,
and in addition could increase the performance on well known architectures like
Haswell by about five percentage points. We can thus conclude that the abstract
parallel redundant hierarchy interface introduced by Alpaka does not prevent
compiler optimization and tuning. However, we also find that the performance
gains observed heavily depend on the target architecture and software environ-
ment available. We express our hope that the implementation of modern C++
support in compilers relevant for high performance computing will foster the
approach we take to performance portability with Alpaka.

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

11
26

4

12
28

8

13
31

2

14
33

6

15
36

0

16
38

4

17
40

8

18
43

2

19
45

6

20
48

0
1.5

2

3

4

5

7

10

15

20

30

40

50

matrix size N

A
ch

ie
v
ed

p
er

fo
rm

a
n
ce

in
%

re
la

ti
v
e

to
th

e
p

ea
k

p
er

fo
rm

a
n
ce

P100 (double,nvlink,u. memory) P100 (float,nvlink,u. memory)

P100 (double,pcie,u. memory) P100 (float,pcie,u. memory)

KNL (double,flat memory,icc) KNL (float,flat memory,icc)

KNL (double,flat memory,gcc) KNL (float,flat memory,gcc)

K80 (double,u. memory) K80 (float,u. memory)

Power8 (double,xl) Power8 (float,xl)

Haswell (double,icc) Haswell (float,icc)

Fig. 8. Achieved performances relative to the peak performance for the fastest param-
eter combinations of every architecture for single and double precision. Some scalings
of particular interest are highlighted.

Our analysis shows that for some architectures such as Intel’s KNL more
tuning parameters have to be included in order to achieve optimum results for
certain problem sizes when optimizing with vendor-specific compilers. For future
applications this potentially increases the time it takes for tuning a code, making
tuning itself a compute- and memory-intensive task.

We clearly find that most modern vendor-specific compilers, with the promi-
nent exception of IBM’s XL compiler, are able to create highly optimized code
for their target architecture from the Alpaka GEMM implementation. This
shows that with Alpaka writing abstract, single-source C++ code with close-to-
zero overhead is possible on todays high performance many-core architectures,
demonstrating that code abstraction for sake of portability and architecture-
specific tuning do not contradict each other.

References

1. AMD: HIP DATA SHEET - It’s HIP to be Open. https://gpuopen.com/

wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.

pdf (Nov 2015), [Online; accessed April 11, 2017]

2. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm,
U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: Picongpu: A fully relativistic
particle-in-cell code for a gpu cluster. IEEE Transactions on Plasma Science 38(10),
2831–2839 (2010)

https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf

1 for(TSize j(0); j < numElements; ++j)
2 {
3 lineC[j] += a * lineB[j];
4 422 a5e: 62 a2 ed 40 b8 0c 18 vfmadd231pd (%rax ,%r11 ,1) ,%zmm18 ,%zmm17
5 422 a65: 62 a2 ed 40 b8 44 18 vfmadd231pd 0x40(%rax ,%r11 ,1) ,%zmm18 ,% zmm16
6 422 a6c: 01
7 422 a6d: 62 32 ed 40 b8 7c 18 vfmadd231pd 0x80(%rax ,%r11 ,1) ,%zmm18 ,% zmm15
8 422 a74: 02
9 422 a75: 62 32 ed 40 b8 74 18 vfmadd231pd 0xc0(%rax ,%r11 ,1) ,%zmm18 ,% zmm14

10 422 a7c: 03
11 422 a7d: 62 32 ed 40 b8 6c 18 vfmadd231pd 0x100(%rax ,%r11 ,1) ,%zmm18 ,%zmm13
12 422 a84: 04
13 422 a85: 62 32 ed 40 b8 64 18 vfmadd231pd 0x140(%rax ,%r11 ,1) ,%zmm18 ,%zmm12
14 422 a8c: 05
15 422 a8d: 62 b2 ed 40 b8 64 18 vfmadd231pd 0x180(%rax ,%r11 ,1) ,%zmm18 ,%zmm4
16 422 a94: 06
17 422 a95: 62 b2 ed 40 b8 5c 18 vfmadd231pd 0x1c0(%rax ,%r11 ,1) ,%zmm18 ,%zmm3
18 422 a9c: 07

Listing 1.2. Dissambled output of objdump -DSC for the most inner and performance
critical loop of the tile matrix multiplication kernel. It shows that loop unrolling,
vectorization and fused multiply add are realized by the compiler.

C++ code

Unrolled assembler code

AVX-512 register

Fused multiply add

3. Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G.,
Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J.,
Widera, R.: Radiative signatures of the relativistic kelvin-helmholtz instability.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. pp. 5:1–5:12. SC ’13, ACM, New York, NY,
USA (2013), http://doi.acm.org/10.1145/2503210.2504564

4. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. IEEE computational science and engineering 5(1), 46–55 (1998)

5. Eckert, C., Zenker, E., Bussmann, M., Albach, D.: Haseongpu – an adaptive, load-
balanced mpi/gpu-code for calculating the amplified spontaneous emission in high
power laser media. Computer Physics Communications 207, 362–374 (2016)

6. Edwards, H.C., Trott, C.R.: Kokkos: Enabling performance portability across
manycore architectures. In: 2013 Extreme Scaling Workshop (xsw 2013). pp. 18–24.
IEEE (2013)

7. Group, K.: The opencl specification - Version 2.1. https://www.khronos.org/

registry/cl/specs/opencl-2.1.pdf (11 Nov 2015), [Online; accessed March 23,
2017]

8. Gumhold, S.: Lecture ”Scientific Visualization” (2011)

9. Hernandez, O.: Overview of the Power8 Architecture. https://indico-jsc.

fz-juelich.de/event/24/session/24/contribution/0/material/slides/

(2016), [Online; accessed March 24, 2017]

10. Hornung, R., Keasler, J., et al.: The raja portability layer: overview and status.
Lawrence Livermore National Laboratory, Livermore, USA (2014)

11. Intel Corporation: Intel Threading Building Blocks. https://www.

threadingbuildingblocks.org/, [Online; accessed April 12, 2017]

12. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming Knights Landing Edition. Morgan Kaufmann (1 Jul 2016)

http://doi.acm.org/10.1145/2503210.2504564
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.1.pdf
https://indico-jsc.fz-juelich.de/event/24/session/24/contribution/0/material/slides/
https://indico-jsc.fz-juelich.de/event/24/session/24/contribution/0/material/slides/
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/

13. Khronos OpenCL Working Group SYCL subgroup: Sycl specification - Version 1.2.
https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf (8 May 2015),
[Online; accessed March 23, 2017]

14. Li, J., Li, X., Tan, G., Chen, M., Sun, N.: An optimized large-scale hybrid dgemm
design for cpus and ati gpus. In: Proceedings of the 26th ACM international con-
ference on Supercomputing. pp. 377–386. ACM (2012)

15. Matthes, A., Widera, R., Zenker, E., Worpitz, B., Hübl, A., Bussmann, M.: Matrix
multiplication software and results bundle for paper ”Tuning and optimization for a
variety of many-core architectures without changing a single line of implementation
code using the Alpaka library” for Pˆ3MA submission (Apr 2017), https://doi.
org/10.5281/zenodo.439528

16. Meuer, H.W., Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: November 2016
— TOP500 Supercomputer Sites (November 2016)

17. Microsoft Corporation: C++ amp : Language and programming
model - Version 1.2. http://download.microsoft.com/download/2/2/9/

22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf

(Dec 2013), [Online; accessed March 23, 2017]
18. Newman, B.: Intel Xeon E5-2600 v3 ”Haswell” Processor Re-

view — Microway. https://www.microway.com/hpc-tech-tips/

intel-xeon-e5-2600-v3-haswell-processor-review/ (8 Sep 2014), [Online;
accessed March 24, 2017]

19. Nvidia: Tesla K80 HPC and Machine Learning Accelerator. https://www.nvidia.
com/object/tesla-k80.html (2014), [Online; accessed March 23, 2017]

20. Nvidia: Tesla P100 Most Advanced Data Center Accelerator. https://www.

nvidia.com/object/tesla-p100.html (2016), [Online; accessed March 23, 2017]
21. Nvidia Corporation: NVIDIAs Next Generation - CUDA Compute Architecture:

Kepler GK110/210. Whitepaper (2014)
22. Nvidia Corporation: NVIDIA Tesla P100 - The Most Advanced Datacenter Accel-

erator Ever Built. WP-08019-001 v01.1 (May 2016)
23. NVIDIA Corporation: NVIDIA CUDA C Programming Guide Version 8.0. http:

//docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf (January 2017),
[Online; accessed March 23, 2017]

24. OpenACC-Standard.org: The OpenACC Application Programming Interface -
Version 2.5. http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
(Oct 2015), [Online; accessed March 23, 2017]

25. Wong. Michael, Andrew, R., Rovatsou, M., Reyes, R.: Khronos’s OpenCL SYCL to
support Heterogeneous Devices for C++. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2016/p0236r0.pdf (12 Feb 2016), [Online; accessed March 23,
2017]

26. Zenker, E.: Graybat - Graph Approach for Highly Generic Communication
Schemes Based on Adaptive Topologies (5 Mar 2016), https://github.com/

ComputationalRadiationPhysics/graybat
27. Zenker, E., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel, W.E., Buss-

mann, M.: Performance-portable many-core plasma simulations: Porting picongpu
to openpower and beyond. In: International Conference on High Performance Com-
puting. pp. 293–301. Springer (2016)

28. Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knüpfer, A., Nagel,
W.E., Bussmann, M.: Alpaka–an abstraction library for parallel kernel accelera-
tion. In: Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. pp. 631–640. IEEE (2016)

https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf
https://doi.org/10.5281/zenodo.439528
https://doi.org/10.5281/zenodo.439528
http://download.microsoft.com/download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf
http://download.microsoft.com/download/2/2/9/22972859-15c2-4d96-97ae-93344241d56c/cppampopenspecificationv12.pdf
https://www.microway.com/hpc-tech-tips/intel-xeon-e5-2600-v3-haswell-processor-review/
https://www.microway.com/hpc-tech-tips/intel-xeon-e5-2600-v3-haswell-processor-review/
https://www.nvidia.com/object/tesla-k80.html
https://www.nvidia.com/object/tesla-k80.html
https://www.nvidia.com/object/tesla-p100.html
https://www.nvidia.com/object/tesla-p100.html
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.openacc.org/sites/default/files/OpenACC_2pt5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0236r0.pdf
https://github.com/ComputationalRadiationPhysics/graybat
https://github.com/ComputationalRadiationPhysics/graybat

	Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library

