
Exploration of Pattern-Matching Techniques for
Lossy Compression on Cosmology Simulation

Data Sets

Dingwen Tao1, Sheng Di2, Zizhong Chen1, and Franck Cappello2,3

1 University of California, Riverside, CA, USA
{dtao001, chen}@cs.ucr.edu

2 Argonne National Laboratory, IL, USA
{sdi1, cappello}@anl.gov

3 University of Illinois at Urbana-Champaign, IL, USA

Abstract. Because of the vast volume of data being produced by to-
day’s scientific simulations, lossy compression allowing user-controlled
information loss can significantly reduce the data size and the I/O bur-
den. However, for large-scale cosmology simulation, such as the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC), where memory over-
head constraints restrict compression to only one snapshot at a time, the
lossy compression ratio is extremely limited because of the fairly low spa-
tial coherence and high irregularity of the data. In this work, we propose
a pattern-matching (similarity searching) technique to optimize the pre-
diction accuracy and compression ratio of SZ lossy compressor on the
HACC data sets. We evaluate our proposed method with different con-
figurations and compare it with state-of-the-art lossy compressors. Ex-
periments show that our proposed optimization approach can improve
the prediction accuracy and reduce the compressed size of quantization
codes compared with SZ. We present several lessons useful for future
research involving pattern-matching techniques for lossy compression.

1 Introduction

Because of ever-increasing parallel execution scale, today’s scientific simulations
are producing volumes of data too large to be accommodated in storage systems.
The limitation comes from the limited storage capacity and I/O bandwidth of
parallel file systems in production facilities. Cosmology simulations such as the
Hardware/Hybrid Accelerated Cosmology Code (HACC) [12] are typical exam-
ples of parallel executions facing this issue. HACC solves an N-body problem
involving domain decomposition, a medium-/long-range force solver based on
a particle-mesh method, and a short-range force solver based on a particle-
particle/particle-mesh algorithm. According to cosmology researchers, the num-
ber of particles to simulate can be up to 3.5 trillion in today’s simulations (and
even more in the future), which leads to 60 PB of data to store; yet a system
such as the Mira supercomputer has only 26 PB of file system storage. Currently,
HACC users rely on decimation in time, storing only a fraction of the simulation

ar
X

iv
:1

70
7.

08
20

5v
2

 [
cs

.I
T

]
 6

 A
ug

 2
01

7

snapshots, to reduce the pressure on the storage system. A reduction factor of
80% to 90% is commonly used. At exascale, temporal decimation will not be
enough to address the limitations of the storage system: snapshots will be so
large (each in the range of 5 PB) that the time to store each snapshot (83 min-
utes on a storage system offering a sustained bandwidth of 1 TB/s) will become
a serious problem. HACC is not a special case. As indicated by [11], nearly 2.5
PB of data were produced by the Community Earth System Model for the Cou-
pled Model Intercomparison Project (CMIP) 5, which further introduced 170
TB of postprocessing data submitted to the Earth System Grid [3]. Estimates of
the raw data requirements for the CMIP6 project exceed 10 PB [2]. At exascale,
storing each full snapshot in this case would also take too long, however, so that
on-line/in situ compression of each snapshot is needed.

In this paper, we explore pattern-matching techniques for lossy compression,
focusing on individual snapshots of the scientific data sets produced by cosmol-
ogy simulations. Because of the constraints of memory consumption, we cannot
leverage the smoothness of a particle’s trajectory (such as smoothness along the
time dimension) to reduce the data size; hence, we must perform compression
on individual snapshots. Unlike the mesh data produced by conventional simu-
lations, such as fluid dynamics, the data of particles in cosmology simulations,
such as coordinate and velocity data, are stored in separate 1D arrays. In the
HACC application, the indices of each 1D array are kept consistent for the same
cosmology particle. Specifically, the HACC simulation data contains six 1D ar-
rays: three coordinate fields (xx, yy, zz) and three velocity fields (vx, vy, vz).
Because of the lack of correlation between adjacent particles in the HACC data
set, state-of-the-art lossy compressors, such as FPZIP [16], ZFP [15] and SZ [9,
20], reach relatively low compression ratios/factors (2 to 5 with the error bound
set to 10−4).

The rest of the paper is organized as follows. In Section 3, we formulate
the data compression problem based on cosmology simulation data sets and the
assessment of several state-of-the-art lossy compressors on the HACC data sets.
In Section 4, we discuss the well-known dictionary-based lossless compression
algorithm LZ77 and propose our pattern-matching-based optimization method
for SZ lossy compression for low spatial coherence and highly irregular data, such
as the velocity variables in the HACC data sets. In Section 5, we evaluate the
compression ratios of our proposed optimization method and compare it with
one variant of the SZ lossy compressor. We discuss related work in Section 2 and
provide conclusions in Section 6.

2 Related Work

Data compression has been extensively studied for decades and can be split into
two categories: lossless compression and lossy compression. The main limiation of
the lossless compressors (such as GZIP [9]) is their fairly low compression ratio on
scientific data sets composed of floating-point values, as confirmed by [10,20,22].

Data	Prediction Quantization Variable-length	
Encoding

Unpredictable	
Data	Compression

Dictionary-based	
Encoding

SZ	Compression	Framework

Fig. 1. Overview of SZ lossy compression algorithm.

Recently, many lossy compressors have been designed and implemented for
scientific data. Most of them are designed for mesh data sets, which are expected
to have strong coherence among the nearby data in the data set, but the quality
of their compression declines on cosmology simulation data sets. For example,
SZ [10, 22] has five main steps including (1) data prediction for each point by
its preceding neighbors in the multidimensional space, (2) error-controlled linear
quantization, (3) customized Huffman coding [13] (i.e., variable-length encod-
ing) to shrink the data size significantly, (4) unpredictable data compression,
and (5) customized LZ77 coding (i.e., dictionary-based encoding). The compres-
sion framework of SZ is shown in Figure 1. ZFP [16] splits the whole data set into
many small blocks with an edge size of 4 along each dimension and compresses
the data in each block separately by a series of carefully designed steps (including
alignment of exponent, orthogonal transform, fixed-point integer conversion, and
binary representation analysis with bit-plane encoding). FPZIP [17] adopts pre-
dictive coding and ignores insignificant bit planes in the mantissa based on the
analysis of IEEE 754 binary representation [7]. SSEM [21] splits data into a high-
frequency part and low-frequency part by wavelet transform [8] and then uses
vector quantization and GZIP. ISABELA [15] sorts the data and then performs
the data compression by B-spline interpolation; but it has to store an extra index
array to record the original location for each point, and it suffers significantly
from low compression ratio. Compression of particle simulation data sets has also
been studied for years, but most of the methods proposed are based on smooth
temporal trajectory of the same particles, which requires loading/keeping mul-
tiple snapshots during the compression/simulation [1, 6, 14, 18, 23]. Thus, they
are not suitable for extremely large-scale simulation in which only one snapshot
is allowed to be loaded into the memory. Omeltchenko et al. [19] proposed a
lossy compression method (called CPC2000 in this paper) that does not rely on
temporal coherence and relies on only a single snapshot. Its main steps involve
reorganizing all particles in the space onto a zigzag-similar space-filling curve [5],
sorting the particles based on the R-indices by a radix-similar sorting method in
each block, and compressing the difference of the adjacent indices by adaptive
variable-length coding.

3 Problem Formulation

Scientific data compression algorithms can be classified into two categories: loss-
less compression and lossy compression. The main limitation of lossless compres-
sors is their limited data reduction capability, that is, up to 2:1 in general [20] and

even lower on cosmology simulation simulation data sets. In this work, therefore,
we focus on lossy compression methods for cosmology simulations.

Cosmology simulations generate multiple snapshots. Because of considera-
tions of memory consumption, we focus on single-snapshot compression without
using temporal coherence in this work. Such simulations contain many variables
each representing one data field of particles. In the HACC simulation data con-
sidered in this study, the variables are stored in separate 1D arrays. Specifically,
each snapshot of HACC simulation contains six single-precision floating-point
variables: xx, yy, zz, vx, vy, and vz. The first three indicate coordinate infor-
mation, and the other three indicate velocity along the three dimensions. The
six variables are stored in separate floating-point arrays. Unlike regular multi-
dimensional mesh data, the particle elements in each array are allowed to be
reordered in the reconstructed data set, whereas the locations or indices of the
elements with regard to the same particle must be consistent across arrays.

The main objective of our work is to optimize the single-snapshot lossy com-
pression ratio for cosmology simulation data sets, provided that the compression
errors are controlled within a user-specified bound for each data point. Compres-
sion ratio is the ratio of the original data size to the compressed data size. Table
1 shows the compression ratios of several state-of-the-art lossy compressors on
the HACC data sets under the value-range-based relative error bound 10−4, de-
noted by ebrel = 10−4. The version of the SZ lossy compressor we focus on in this
work is “SZ-LV”, which is based on the last-value prediction model. Note that
for CPC2000, ZFP, and SZ, we use the absolute error bounds computed based on
ebrel = 10−4 and the value range of each variable; for FPZIP, we set the number
of retained bits to 21 as approximate ebrel = 10−4 for all the variables. The SZ
lossy compressor has higher compression ratios on the coordinate variables (i.e.,
xx, yy, zz) than on the velocity variables (i.e., vx, vy, vz). Therefore, in this work
we focus on optimizing the prediction accuracy and compression ratios based on
SZ lossy compression for the velocity variables in the HACC data.

Table 1. Compression ratios of different variables with different compressors on HACC
data sets under value-range-based relative error bound 10−4.

Compressor xx yy zz vx vy vz

CPC2000 7.1 7.1 7.1 2.3 2.3 2.3

FPZIP 5.8 5.7 4.4 2.2 2.2 2.2

ZFP 2.3 2.3 2.2 2.3 2.3 2.3

SZ 8.2 8.3 5.9 4.0 4.0 4.0

4 Pattern-Matching Techniques for Lossy Compression

In this section, we first discuss the well-known dictionary-based lossless com-
pression algorithm Lempel-Ziv 77 (LZ77). It can encode a sequence of symbols
and compress the input source by using the information of recently frequent con-
secutive symbols. Inspired by LZ77’s classic idea, we then propose our pattern-
matching-based lossy compression method, called SZ-PM. Because of different
input sources, we propose many tailored designs for dealing with lossy compres-
sion and floating-point scientific data.

4.1 LZ77: string matching based lossless compression

while look-ahead buffer is not empty do
go backwards in search buffer to find longest match of the look-ahead
buffer;
if match found then

output (offset, length, next symbol in look-ahead buffer);
shift sliding window by length+1;

else
output (0, 0, first symbol in look-ahead buffer);
shift sliding window by 1;

end

end
Algorithm 1: Pseudo code of the LZ77 algorithm

The Lempel-Ziv 77 (LZ77) lossless compression algorithm is the first Lempel-
Ziv compression algorithm. Unlike scientific data compression, LZ77 is designed
for encoding a sequence of symbols byte by byte based on a dictionary con-
structed from a portion of the recently encoded sequence. Specifically, LZ77
encodes the input sequence through a sliding window composed of two buffers,
a search buffer and a look-ahead buffer, as shown in Figure 2. The search buffer
contains the most recently compressed symbols, while the look-ahead buffer con-
tains multiple uncompressed symbols. The algorithm searches the longest prefix
of the look-ahead buffer that is also contained in the search buffer. The details of
LZ77 are shown in Algorithm 1. The LZ77 algorithm searches all the consecutive
symbols in the search buffer to identify whether these symbols match the con-
secutive symbols in the look-ahead buffer. The offset in the algorithm represents
the distance of the longest match’s first symbol (in the search buffer) from the
look-ahead buffer, and length represents the length of the longest match. There-
fore, the general idea of LZ77 is to save storage by using the information from
the recent symbol sequences based on a string-matching approach. It inspires us
to design a similar matching technique for lossy scientific data compression.

4.2 SZ-PM: pattern-matching-based lossy compression

We propose a pattern-matching-based lossy compression method called SZ-PM.
The idea of pattern matching is similar to the string matching idea used in LZ77.

Search	buffer Look	ahead	
buffer

Not	encoded	
sequence

Encoded	
sequence

Dictionary

Sliding	window

Input	sequence

Fig. 2. Overview of LZ77 lossless compression algorithm.

It is also designed to use the information of recent floating-point sequences with
similar pattern in order to improve the prediction accuracy and compression
ratio of SZ lossy compression for irregular data. Unlike the lossless compression
algorithm for symbols (one byte per symbol), however, the lossy compression
for scientific data is designed mainly for single/double floating-point data (4/8
bytes per value) and can tolerate compression errors within user-controlled er-
ror bounds. Therefore, we can design many tailored features for the pattern-
matching method.

Let us first define necessary notations. Similar to LZ77, our algorithm also
maintains two buffers in the sliding window during the compression: a search
buffer and a look-ahead buffer. Let the search buffer size be m and the look-
ahead buffer size be n. Here the buffer size represents the number of data
points in the buffer. Let the m compressed data points in the search buffer be
{s1, s2, ..., sm} and the n uncompressed data points in the look-ahead buffer be
{l1, l2, ..., ln}. Let the m−n+1 sequences with length of n in the search buffer to
beX1, X2, ..., Xm−n+1, whereX1 = {s1, ..., sn}, X2 = {s2, ..., sn+1}, ..., Xm−n+1 =
{sm−n+1, ..., sm}. Let the one sequence with length of n in the search buffer be
Y = {l1, l2, ..., ln}.

We now describe our tailored designs of pattern matching for lossy com-
pression and scientific data. For compression, (1) we fix the length of matching
sequences to be the size of look-ahead buffer (i.e., n). In other words, we at-
tempt to identify the most similar sequence in the search buffer for the whole
look-ahead buffer with length n. (2) We sort the n data points in each sequence,
including X1, X2, ..., Xm−n+1 from the search buffer and Y from the look-ahead
buffer. (3) For each sorted sequence, we subtract the mean value of the sequence
from each value. In other words, we shift the sequence by its mean value as
X = (x1 −X,x2 −X, ..., xn −X) and Y = (y1 − Y , y2 − Y , ..., yn − Y), where

X = 1
n

n∑
i=1

xi and Y = 1
n

n∑
i=1

yi. (4) We attempt to match the sequences from

the search buffer for the look-ahead buffer, but we relax the “matching” con-
dition. Specifically, the matching condition of LZ77 algorithm is that two sym-
bol sequences are exactly the same; but in our algorithm we define two shifted
floating-data sequences X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) as “matched”

if (
n∑

i=1

|xi − yi|p)1/p < θ, where θ is a given threshold, X is one shifted sequence

from the search buffer, and Y is the shifted sequence of the look-ahead buffer.
Note that the search buffer can have multiple matched sequences. (5) We pick
the matched sequence X∗ with the smallest distance from the multiple matched
sequences as the most similar sequence for Y . We denote the values in X∗ by
{x∗1, x∗2, ..., x∗n}. We name this matching process as “pattern matching” and the
sequence X∗ as the “pattern matched sequence” for Y . (6) We always shift the
sliding window by length of n after we go over the m − n + 1 sequences in the
search buffer. Unlike LZ77, we also shift the sliding window by length of n, even
if we cannot find a matched sequence under the threshold θ. (7) We use X∗ as
the prediction sequence for Y , if the pattern matched sequence can be found.
Specifically, we take x∗i −X∗ as the prediction value for yi − Y of data point i.
We use SZ’s original prediction model proposed in [22] to generate the prediction
values for Y , if no matched sequence exists in the search buffer. Therefore, we
must use an extra bit, denoted by bitpredmd, to represent the prediction method
of each sequence. For example, we use bitpredmd = 0 to indicate that the sequence
is predicted by pattern-matching method and bitpredmd = 1 to indicate that the
sequence is predicted by SZ’s original prediction model. (8) Similar to LZ77, if
the sequence is predicted by the pattern-matching method, we still have to store
the offset; but we do not need to store the length due to the fixed length. We also
have to store the mean value of Y in order to reconstruct the data during the
decompression. (9) We use the linear quantization method and the customized
Huffman coding proposed in [22] to encode the differences between prediction
values and real values for Y and compress the quantization codes based on the
user-set error bound. Because of space limitations, we do not describe them in
detail here.

For decompression, we use the same decompression method proposed in [22]
to construct the differences between prediction values and real values for each
sequence. For example, in decompressing the sequence Y , we denote the differ-
ence of data point i in Y by ydiffi . We then construct the prediction values of Y
by its corresponding prediction method known from bitpredmd. If bitpredmd indi-
cates Y is predicted by SZ’s original prediction model during the compression,
we construct its prediction values using the same process described in [22]; if
bitpredmd indicates Y is predicted by the pattern-matching approach during the
compression, we use the stored offset and mean value to construct the predic-
tion values. Specifically, we can construct the prediction value of data point i
by ypredi = x∗i − X∗ + Y , where X∗ is the pattern-matched sequence that has
already been decompressed. After constructing the prediction values for Y , we
can reconstruct the value of data point i by ydecomp

i = ypredi + ydiffi .

Algorithm 2 shows the pseudo code of our proposed pattern-matching-based
lossy compression method. Figure 3 shows an example of two pattern-matched
sequences transformed by sorting and shifting. We have several remarks here. (1)
For our matching condition, we treat the two n-length floating-point sequences
as two data points in the n-dimensional space and define them as “matched”
if their distance in Lp norm is smaller than the threshold θ. According to [4],
we set θ to 0.5 of the search buffer size. (2) From our initial study we find that

p > 1 cannot reduce the size of the compressed quantization codes on the HACC
data; hence we set p = 1/2 in our algorithm and the following evaluation. (We
will research the optimal p in the future.) (3) As a result of the sorting process,
the reconstructed data is recorded in one sequence. But as described in Section
3, the particle elements in each 1D array are allowed to be reordered in the
reconstructed data sets. Hence, we do not have to extra storage to record the
initial index information. (4) We use extra memory space to sort and shift the
sequences without any modifications of the original data. The reason for sorting
and shifting is to increase the possibility of matching sequences due to the high
irregularity of the data and the relatively large value range of the floating-point
data.

while look-ahead buffer is not empty do
sequence Y is composed of the n data points of the look-ahead buffer;
search buffer contains m− n+ 1 sequences {X1, X2, ..., Xm−n+1};
sort each sequence including X1, X2, ..., Xm−n+1 and Y ;
compare sorted Y with {X1, X2, ..., Xm−n+1} and find sequence X∗

with the smallest distance (in Lp norm) from Y, i.e., dist(X∗, Y);
if dist(X∗, Y) < θ then

bitpredmd = 0;

store (offset, mean value Y);

prediction values of Y are calculated by ypredi = x∗i −X∗ + Y ;

else
bitpredmd = 1;
use SZ’s original prediction model to predict values of Y ;

end

calculate differences between real value yi and prediction value ypredi ;
encode differences using linear quantization method based on user-set
error bound;

compute and record decompressed value;
shift sliding window by length of n;

end
compress linear quantization codes using Huffman coding;
compress unpredictable data by SZ’s binary representation analysis;

Algorithm 2: Pseudo code of SZ-PM algorithm

5 Empirical Evaluation

In this section, we evaluate our proposed lossy compression method, SZ-PM, on
the velocity variables in the HACC data sets, and we compare it with the SZ
lossy compressor [22]. Note that the SZ lossy compressor we evaluate in this
study is a variant of the original SZ. It first splits the original data into multiple
segments. The segment size is consistent with the look-ahead buffer size. It then
performs a sorting within each segment. After that, it conducts the original SZ
compression on the transformed data. The reason of using this variant version

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sequence	X* Sequence	Y

Fig. 3. Example of two pattern matched sequences after sorting and shifting.

(a)	SZ (b)	SZ-PM

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

Pr
ob

ab
ili
ty

Quantization	Interval

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

Pr
ob

ab
lit
y

Quantization	Interval

Fig. 4. Distribution produced by linear quantization encoder in (a) SZ and (b) SZ-PM
on the velocity variable vx in the HACC data sets with 511 quantization intervals.

is that we want to evaluate the effects of the pattern-matching method without
impact from the sorting technique and to compare SZ and SZ-PM in a fair level.

As described in [22], the distribution produced by linear quantization en-
coder can significantly affect the performance of Huffman coding [13]. Generally
speaking, the more concentrated the distribution, the higher the compression
ratio that the Huffman coding can achieve. Figure 4 shows the distributions pro-
duced by linear quantization encoder in the SZ and our proposed SZ-PM lossy
compression method on the velocity variable vx in the HACC data sets. Note
that we use a 10−4 value-range-based relative error bound and 511 quantization
intervals. Based on our observation, 511 quantization intervals can cover more
than 99.9% data points during the linear quantization in this case. The figure
illustrates that our proposed SZ-PM can improve the prediction accuracy and
make the distribution of quantization code more concentrated. (We will show
the incremental results in detail later.)

Table 2. Evaluation of our proposed SZ-PM on the velocity variable vx in the HACC
data sets with different sizes of sorting/matching sequence.

Size of
Quantization Code

(bits/value)

Size of
bitpredmd

(bits/value)

Ratio of
PM Sequence

(%)

Size of
Offset

(bits/value)

Size of
Mean Value
(bits/value)

Overall
Bit-rate

(bits/value)

Compression
Ratio

CPC2000 / / / / / 13.9 2.30

SZ(8) 7.31 / / / / 7.3 4.38

SZ-PM(8) 5.45 1/8 99.6% 1.25 3.98 10.8 2.96

SZ(16) 6.75 / / / / 6.8 4.74

SZ-PM(16) 6.01 1/16 93.1% 0.58 1.86 8.5 3.76

SZ(32) 6.16 / / / / 6.2 5.19

SZ-PM(32) 6.07 1/32 66.3% 0.04 0.66 6.8 4.71

Table 2 shows the experimental results of our evaluation for SZ-PM on the
HACC data sets. In the experiments, we set the search buffer size to 1024;
hence, we need to use 10 bits (210 = 1024) to represent the offset value for each
sequence that is predicted by the pattern-matching method during compression.
We test SZ-PM with different configurations of three look-ahead buffer sizes:
8, 16, and 32. The size of each category presented in the table is the atomized
size (i.e., bits per value). Note that the original data type of the HACC data
is single floating-point (i.e., 32 bits per value); hence, the compression ratio
can be calculated by 32/overall size. The number in each bracket represents
the segment size/sequence size; for example, SZ(8) means that the segment size
used for sorting in SZ is 8, and SZ-PM(8) means that the length of sequence used
in the pattern matching is 8. The column “Ratio of PM Sequence” means the
ratio of the sequences predicted by the pattern matching during compression.

We make several observattions from Table 2. (1) SZ-PM can improve the
prediction accuracy and reduce the size of the compressed quantization codes.
(2) The shorter the matching sequence is, the more accurately the SZ-PM can
predict. (3) For SZ-PM, the shorter the matching sequence is, the smaller the
compressed quantization codes will be; however, for SZ, on the contrary, the
longer the segment is, the smaller the compressed quantization codes will be. (4)
The longer the matching sequence is, the less the storage overhead that the offset
and mean values will have. (5) The reduced size of the compressed quantization
codes, achieved from the improvement of the prediction accuracy by SZ-PM, is
counteracted by the incremental overhead of storing offset and mean values.

From these observations, we derive some useful lessons for future research
with respect to the pattern-matching techniques in lossy compression as follows.
(1) Our proposed pattern-matching technique can enhance the prediction accu-
racy and reduce the size of compressed quantization codes, but the improvement
is not enough to cover the extra overhead introduced by storing offset and mean
values. (2) We should further improve the prediction accuracy using a more ad-
vanced pattern-matching technique. (3) We should reduce/eliminate the extra
overhead of offset and mean values, especially the mean values of floating-point
data type. For example, we may shift the sequence by the value of the first el-
ement in the sequence; consequently, we do not need to store the mean values.
(4) Currently, we consider reordering only one variable in the HACC data sets.
In future research, we need to consider the impact of reordering one variable to
the other variables, since we have to make all the variables consistent.

6 Conclusion

In this work, we explored pattern-matching techniques for lossy compression
based on the SZ compressor. The experiments demonstrate that our proposed op-
timization method, SZ-PM, can improve the prediction accuracy and reduce the
size of compressed quantization codes on the HACC velocity data, but the com-
pression ratio cannot be improved because of storing extra information. We plan
to explore ways to improve the prediction accuracy with the pattern-matching
technique and to reduce the storage of extra information.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, un-
der contract number DE-AC02-06CH11357. The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department
of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or on behalf of the Government. The
Department of Energy will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

References

1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Transac-
tions on Computers 100(1), 90–93 (1974)

2. Baker, A.H., Xu, H., Dennis, J.M., Levy, M.N., Nychka, D., Mickelson, S.A., Ed-
wards, J., Vertenstein, M., Wegener, A.: A methodology for evaluating the impact
of data compression on climate simulation data. In: HPDC’14. pp. 203–214 (2014)

3. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M., Chervenak, A.,
Cinquini, L., Drach, B., Foster, I., Fox, P., et al.: The Earth System Grid: Sup-
porting the next generation of climate modeling research. Proceedings of the IEEE
93(3), 485–495 (2005)

4. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings
of the 15th International Conference on Data Engineering. pp. 126–133. IEEE
(1999)

5. Chanussot, J., Lambert, P.: Total ordering based on space filling curves for multi-
valued morphology. Computational Imaging and Vision 12, 51–58 (1998)

6. Chen, Z., Son, S.W., Hendrix, W., Agrawal, A., Liao, W., Choudhary, A.N.: NU-
MARCK: machine learning algorithm for resiliency and checkpointing. In: SC 2014.
pp. 733–744 (2014)

7. Committee, I.S., et al.: 754-2008 IEEE standard for floating-point arithmetic. IEEE
Computer Society Std 2008 (2008)

8. Daubechies, I.: The wavelet transform, time-frequency localization and signal anal-
ysis. IEEE transactions on information theory 36(5), 961–1005 (1990)

9. Deutsch, L.P.: GZIP file format specification version 4.3 (1996)

10. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In:
2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2016, Chicago, IL, USA, May 23-27, 2016. pp. 730–739 (2016)

11. Gleckler, P.J., Durack, P.J., Stouffer, R.J., Johnson, G.C., Forest, C.E.: Industrial-
era global ocean heat uptake doubles in recent decades. Nature Climate Change
(2016)

12. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel,
P., Morozov, V., Zagaris, G., Peterka, T., et al.: Hacc: Simulating sky surveys on
state-of-the-art supercomputing architectures. New Astronomy 42, 49–65 (2016)

13. Huffman, D.A., et al.: A method for the construction of minimum-redundancy
codes. Proceedings of the IRE 40(9), 1098–1101 (1952)

14. Kumar, A., Zhu, X., Tu, Y.C., Pandit, S.: Compression in molecular simulation
datasets. In: International Conference on Intelligent Science and Big Data Engi-
neering. pp. 22–29. Springer (2013)

15. Lakshminarasimhan, S., Shah, N., Ethier, S., Ku, S., Chang, C., Klasky, S.,
Latham, R., Ross, R.B., Samatova, N.F.: ISABELA for effective in situ compres-
sion of scientific data. Concurrency and Computation: Practice and Experience
25(4), 524–540 (2013)

16. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE transactions on
visualization and computer graphics 20(12), 2674–2683 (2014)

17. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data.
TVCG 12(5), 1245–1250 (2006)

18. Meyer, T., Ferrer-Costa, C., Pérez, A., Rueda, M., Bidon-Chanal, A., Luque, F.J.,
Laughton, C., Orozco, M.: Essential dynamics: a tool for efficient trajectory com-
pression and management. Journal of Chemical Theory and Computation 2(2),
251–258 (Mar 2006)

19. Omeltchenko, A., Campbell, T.J., Kalia, R.K., Liu, X., Nakano, A., Vashishta,
P.: Scalable i/o of large-scale molecular dynamics simulations: A data-compression
algorithm. Computer Physics Communications 131(1), 78 – 85 (2000)

20. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific
floating-point data. In: Data Compression Conference, 2006. DCC 2006. Proceed-
ings. pp. 133–142. IEEE (2006)

21. Sasaki, N., Sato, K., Endo, T., Matsuoka, S.: Exploration of lossy compression
for application-level checkpoint/restart. In: Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. pp. 914–922. IEEE (2015)

22. Tao, D., Di, S., Chen, Z., Cappello, F.: Significantly improving lossy compression
for scientific data sets based on multidimensional prediction and error-controlled
quantization. In: 2017 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2017, Orlando, Florida, USA, May 29-June 2, 2017. pp. 1129–
1139 (2017)

23. Yang, D.Y., Grama, A., Sarin, V.: Bounded-error compression of particle data
from hierarchical approximate methods. In: Proceedings of the 1999 ACM/IEEE
Conference on Supercomputing. SC ’99, ACM, New York, NY, USA (1999)

	Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets

