
From Big Data to Big Displays
High-Performance Visualization at Blue Brain

Stefan Eilemann, Marwan Abdellah, Nicolas Antille, Ahmet Bilgili,
Grigory Chevtchenko, Raphael Dumusc, Cyrille Favreau, Juan Hernando,
Daniel Nachbaur, Pawel Podhajski, Jafet Villafranca, Felix Schürmann?

Blue Brain Project, Ecole Polytechnique Federale de Lausanne

Abstract. Blue Brain has pushed high-performance visualization (HPV) to com-
plement its HPC strategy since its inception in 2007. In 2011, this strategy has
been accelerated to develop innovative visualization solutions through increased
funding and strategic partnerships with other research institutions.
We present the key elements of this HPV ecosystem, which integrates C++ visu-
alization applications with novel collaborative display systems. We motivate how
our strategy of transforming visualization engines into services enables a variety
of use cases, not only for the integration with high-fidelity displays, but also to
build service oriented architectures, to link into web applications and to provide
remote services to Python applications.

1 Motivation

The Blue Brain Project (BBP) uses simulation-based research to analyze and reverse
engineer cortical neuron circuits. The simulated models go beyond using detailed mod-
els of individual neurons or large-scale network models of simplified neurons, they
model in the order of hundreds of thousands of detailed neurons in a fully connected
circuit. The project generates a multitude of data for the model building and during
the simulation of these models. This data ranges from terabyte-sized image stacks for
data extraction to detailed in-silico circuit models of large geometric complexity and
terabyte-size simulation reports.

Visualization supports the BBP along all parts of the project to understand and de-
bug model data, building and simulation algorithms as well as validating and discov-
ering new insight from the in-silico experiments. Our strategy to support this mission
is based on components linked through network protocols: High-fidelity display sys-
tems to see more detail in complex data, a set of standard rendering engines (rasteriza-
tion, out-of-core volume rendering, interactive raytracing), and decoupled, light-weight
applications using these components remotely. In the following we will present these
components along with a few use cases.

2 High-Fidelity Displays

High-fidelity display systems are the integration point of the Blue Brain visualization
capabilities. They are the evolution of existing visualization systems, enabling high res-
? firstname.lastname@epfl.ch

ar
X

iv
:1

70
6.

10
09

8v
1

 [
cs

.G
R

]
 3

0
Ju

n
20

17

olution, immersion and team collaboration. Compared to current single-user or single-
presenter systems, collaborative display systems allow real team work through a com-
bination of size, resolution and user friendly implementation. Compared to immersive
visualization systems like the CAVE, they provide a more approachable environment for
high-fidelity visualization. For all use cases, the increased display size and resolution
allows better data exploration for 2D and 3D content, facilitating large data exploration.

2.1 Tiled Multitouch Display Walls

The core of the Blue Brain visualization infrastructure are multiple high-resolution tiled
display walls driven by our Tide software [1]. All walls are equipped with a multitouch
user interface and can be remote controlled from any web browser. The walls are built
using thin-bezel, 55 inch, Full HD LCD panels with a hardened glass sheet. We use 4×3
and 3× 3 configurations for a total of 24 and 18 Megapixel resolution, respectively.
The display size of over five meter diagonally (four meter for 3× 3) allows team-size
collaboration (up to ten people) or project-wide presentations (up to a hundred people).
Figure 1 shows one wall during a project-wide presentation with multiple interactive
applications running remotely on the wall.

Fig. 1: Blue Brain 4×3 tiled display wall

2.2 Tide

Tide (Tiled Interactive Display Environment) is the software driving the Blue Brain tiled
display walls. It provides multi-window, multi-user touch interaction on large surfaces
— think of a giant collaborative wall-mounted tablet. Tide is a distributed application
that can run on multiple machines to power display walls or projection systems of any

size. Its user interface is designed to offer an intuitive experience on touch walls. It
works just as well on non touch-capable installations by using its web interface from
any web browser. Figure 1 shows Tide on a 4×3 display wall and Figure 2 shows the
Tide web interface in a browser.

Fig. 2: Tide web interface

While there is substantial research on tiled display wall software [3,4,6,11,12,14],
we found that most solutions were not ready for production use in a 24×7 unattended
environment. For this reason, we started with the TACC DisplayCluster open source
software [12], which we incrementally refactored and improved to the current TIDE
implementation. On the other hand, the hardware has been commoditized to make these
type of installations affordable to medium-sized institutions which allowed us to build
the software integration for a reasonable startup cost. We have focused on the mul-
titouch user interface, which implements a low entry barrier for new users, a unique
capability of our solution.

Tide supports three types of content: files (high-resolution images, movies, pdfs),
built-in applications (web browser, whiteboard) and remote applications using the De-
flect library (DesktopStreamer, Equalizer-based applications, Brayns). The multitouch
user interface can handle multiple users manipulating different windows and their con-
tent simultaneously.

2.3 Deflect

Deflect is the client library for Tide. It provides an API for pixel streaming to Tide
and for receiving events from Tide. The pixel streaming allows synchronized parallel
streaming from parallel rendering application as well as monoscopic and stereoscopic
streams. Various events allow the application to react to multi-touch input from the wall.

Deflect is integrated into the Equalizer parallel rendering framework [5], enabling
transparent usage of Equalizer applications on Tide walls. Furthermore, the Desktop-

Streamer application mirrors the desktop of other machines onto a wall window and
allows interaction with the remote desktop. Other rendering applications, such as our
interactive raytracing engine Brayns [2] are easily integrated with Deflect and Tide.

2.4 OpenDeck

OpenDeck is our next-generation visualization system, aiming to integrate the success
of tiled display walls with a seamless transition to fully immersive environments. We
are currently in the process of installing a system which consists of a semi-cylindrical
back-projection screen with 41 Megapixel usable resolution on a 36 m2 surface (Fig-
ure 3). Like the display walls, it is equipped with multitouch capabilities which makes
it usable as a monoscopic collaboration system from the first day of installation. Unlike
tiled display walls, it is active stereo capable and equipped with a 3D tracking system
for immersive rendering. For increased immersion, a lower resolution front projection
system fills in the floor area. OpenDeck will run TIDE and our immersive applications
based on Equalizer [5] once the system is installed.

Fig. 3: OpenDeck concept rendering

OpenDeck will provide a unique environment for the research and development of
new visualization techniques. It will open a set of questions along immersive touch user
interfaces, transitions and mixing of monoscopic to immersive usage, the combination
of tracked and touch devices, multi-user immersion, latency reduction for remote im-
mersive rendering as well as multi-site collaboration.

3 Rendering Applications

The rendering applications form the backbone of our ecosystem. They cover a wide
range of established rendering algorithms to serve a broad set of use cases for visual
debugging, scientific illustrations and communication.

3.1 Brayns: Interactive Raytracing

Advances in computer hardware and software have brought raytracing to the point
where it replaces classical rasterization for virtually all use cases in scientific visual-
ization. On one hand, OpenGL-like local illumination for typical data sets used with
rasterization (up to hundred million triangles) can be done at similar framerates to
OpenGL [16]. For small datasets, OpenGL performs better, but for larger data sets ray-
tracing outperforms OpenGL. This is due to a better scalability with respect to the data
set size (O(logN) vs O(n)). Furthermore, CPU-based raytracing allows the rendering
of larger data sets without any level-of-detail algorithms due to the larger memory size.
Last, but not least, advanced rendering algorithms such as shadowing, reflections and
global illumination (Figure 4, left) are significantly easier to implement in a raytracer.
The only area where rasterization provides a benefit is for rendering at very high frame
rates, needed for example for immersive visualization, or very high resolutions.

Fig. 4: Interactive raytracing for neuroscience

It is for these reasons that interactive raytracing is the future technology for interac-
tive and offline rendering at Blue Brain. We have developed a first open source imple-
mentation of a visualization engine with different backends: OSPRay [16] for CPU-
based raytracing and OptiX [15] for GPU-based raytracing. This application called
Brayns can load and visualize our data sets in a variety of modes and integrates with
our messaging solution to be accessible from Python. We are currently integrating the
key algorithms from Livre for out-of-core volume rendering in Brayns, which will also
facilitate mixing polygonal with large volumetric data in a single scene (Figure 4, right).

3.2 RTNeuron: OpenGL Parallel Rendering

RTNeuron [10] is the oldest of our interactive visualization tools. Originally conceived
as a standalone application for visualizing simulation results, it has evolved into a
rasterization-based rendering engine library implemented in C++ with a Python wrap-
ping. The power of RTNeuron lies in a domain specific API designed for the visualiza-

tion of detailed neuronal circuit models, this API allows for building custom applica-
tions tailored for specific use cases. It provides features to visualize static circuit data
and some simulation results. Static data visualization includes different visual repre-
sentations for neurons, synapses, selective pruning of neuronal trees, clipping planes
and others. The simulation results that can be displayed are the spiking activity of the
neurons and scalar variables from the cable models mapped to the neuron surface. The
color maps for displaying these data are highly configurable, allowing to apply different
color maps to different cell subsets.

Neurons can be displayed with different levels of detail ranging from simple spheres,
cylinder-like geometric models and detailed polygonal meshes. Advanced rendering
techniques included are several types of parallel rendering algorithms (such as sort-first
and sort-last) and several algorithms for transparency rendering that enable efficient
and correct rendering of scenes with great geometrical complexity and high depth com-
plexity. Transparency is particularly suitable for masking and highlighting features of
interest on the circuit. Ongoing work is a more scalable parallel rendering algorithm
specially suited for transparency. Tiled rendering is also possible, which allows very
high resolution renderings suitable for printing at sizes larger than A0 (the original of
Figure 5 left is a 36640×26000 pixel image).

The core engine is implemented in C++ using Equalizer and OpenSceneGraph and
leverages part of our messaging framework to allow coupling with other applications.
The 3D view can be embedded inside Qt applications (Figure 5, right), in particular
in Python with PyQt and QML for overlaying GUI elements. Several use case specific
applications have been built this way.

Fig. 5: RTNeuron rendering the simulated membrame potential of a fraction of the
simulation (left) and a circuit visualization application for hippocampus model vali-
dation (right)

3.3 Livre: Out-of-Core Volume Rendering

Livre is an interactive volume rendering engine available under a permissive open
source license. Our main contributions are: a state-of-the-art implementation of an

Fig. 6: Livre rendering a MicroCT dataset (left) and the selected LODs (right)

octree-based level-of-detail (LOD) selection, a task parallel rendering pipeline, a multi-
GPU parallel rendering engine, and an easily extensible renderer through the use of
plugin data sources. Our system brings together state-of-the art algorithms to create a
volume rendering engine capable of handling extremely high-resolution volumes us-
ing a high degree of parallelism, both on a single system and in a distributed cluster.
We employ a GPU-based ray casting algorithm to compute the radiance absorption of
the given volumetric data. The computation is executed per pixel on the pixel shader
hardware of the GPU.

In our out-of-core data access layer, multi-resolution data is represented as an octree
data structure. This representation accelerates the selection of the proper level-of-detail
and to track the status of the LODs (in CPU memory, in GPU memory, not loaded).
While rendering, view-based LOD selection is performed using the screen-space-error
(SSE) [9] technique. Figure 6 shows the rendering of a MicroCT dataset with an illus-
tration of the selected LOD levels.

The creation of volume bricks, their upload to the GPU and the rendering are exe-
cuted in separate tasks. These tasks run asynchronously, that is, rendering is decoupled
from data loading. Livre uses a plugin mechanism to access the volume data, where
data sources are implemented as shared libraries and are loaded on application startup
based on the URI of the input data. Data sources only have to provide the requested
volume bricks, that is, there is no defined file format or even requirement to read the in-
put data from a file system. This flexibility of the plugin approach lead to novel volume
rendering use cases, where volume representations are created on the fly from different
input data sets, for example from simulation data.

4 Messaging and Service Architecture

ZeroEQ
ZeroMQ
ZeroConf
ZeroBuf

Pub/Sub
http::Server

Tide

Brayns

Livre

RTNeuron

Jupyter

Desktop

Web

Deflect

SOA

Fig. 7: Messaging-enabled use
cases

All Blue Brain applications integrate messaging
libraries which allow them to be used as services
in a variety of use cases. For example, the Tide
web server providing the user interface shown
in Figure 2, is based on this messaging solu-
tion. Other use cases are remote python APIs,
JavaScript user interfaces and service architec-
tures combining multiple visualization applica-
tions with data providers such as HPC simula-
tions (Figure 7).

The base communication layer ZeroEQ uti-
lizes ZeroMQ as the transport layer, the Zero-
Conf protocol for discovery, and our novel Zero-
Buf serialization library for high-performance
messaging. A fully integrated HTTP server provides a bridge to JavaScript, Python
and similar environments by implementing REST APIs with JSON payload. Figure 8
shows a class diagram of our messaging solution.

Receiver(sharedReceiver)
receive(timeout)

Receiver

Subscriber(URL, session, receiver)
subscribe(type, func)
subscribe(serializable)

Subscriber
Server(URL, receiver)
handle(method, endpoint, func)
handle(method, object)

http::Server

toBinary()
fromBinary()
toJSON()
fromJSON()
getSchema()

Serializable

Subscriber(URL, session, receiver)
publish(data, size)
publish(serialisable)

Publisher

toBinary()
fromBinary()
toJSON()
fromJSON()
getSchema()

ZeroBuf

Fig. 8: UML Diagram of the main messaging classes

4.1 ZeroEQ

ZeroEQ is our C++ messaging library, wrapping up existing technologies into an API
which is convenient to use and easy to integrate into C++ code. It provides two messag-
ing services: publish-subscribe and HTTP. For binary and JSON encodings it relies on
a simple Serializable interface, for which ZeroBuf provides a sample implementation.
To facilitate the simple use case of linking a few applications, ZeroEQ uses the zeroconf
protocol to discover and connect to related applications. For more complex scenarios,
explicit connections are supported.

z e r o b u f : : r e n d e r : : Camera camera ;
z e r o e q : : P u b l i s h e r p u b l i s h e r ;
z e r o e q : : S u b s c r i b e r s u b s c r i b e r ;

s u b s c r i b e r . s u b s c r i b e (camera) ;

whi le (r e n d e r i n g)
{

i f (updateCamera (camera)) / / had u s e r e v e n t
p u b l i s h e r . p u b l i s h (camera) ;

e l s e / / p o l l s u b s c r i p t i o n
s u b s c r i b e r . r e c e i v e (0 /∗ms∗ /) ;

r ende rF rame (camera) ;
}

Listing 1.1: Publish-Subscribe Example

z e r o e q : : URI u r i (” t c p : / / l o c a l h o s t ”) ;
z e r o e q : : P u b l i s h e r p u b l i s h e r (u r i , z e r o e q : : NULL SESSION) ; / / d e a c t i v a t e z e r o c o n f
z e r o e q : : S u b s c r i b e r s u b s c r i b e r (p u b l i s h e r . getURI ()) ; / / u se c o n c r e t e p o r t

Listing 1.2: Explicit Addressing

Publish-Subscribe The publish-subscribe service is implemented in a Publisher and
Subscriber class. It provides event-based messaging, based on a 128-bit message type
with arbitrary payload. The message type is used for message subscription, filtering
and routing. The payload is expected to be uniquely identified by the message type,
that is, all applications agree for the decoding and semantics of any given message
type. ZeroBuf provides a sample implementation for this. The underlying transport uses
ZeroMQ pub-sub sockets.

The pub-sub service is stateless, that is, applications have no expectation of when
messages are received or who receives published messages. This communication pat-
tern naturally leads to robust services, since there is no possiblity for deadlocks or un-
defined behaviour. The pub-sub API is provided in two flavors: a simple pointer & size
memory buffer, and a higher level object-based abstraction. The object-based API is
syntactic sugar for the low-level API, and allows automatic publish and update of ob-
jects with a few lines of code. It uses the toBinary() and fromBinary() methods of the
Serializable interface to call the low-level API.

The example in Listing 1.1 shows the integration of camera synchronization in a vi-
sualization application. This example relies on the builtin zeroconf protocol to connect
application instances. Subscribers only subscribe to events from publishers within the
same session. The default session name is the user name, and can be customized using
an environment variable or non-default constructor. Similarly, the subscriber can sub-
scribe by session or address. Listing 1.2 illustrates an explicitly addressed subscription.
Notice that the subscriber uses the publisher URI, which will contain the concrete port
chosen for the publisher.

Subscribers are derived from a (Receiver) base class, which is shared with the http
server. All receivers can share their receive() operation at construction time, that is,

z e r o e q : : S u b s c r i b e r l o c a l (z e r o e q : : URI (” l o c a l h o s t :29387 ”)) ;
z e r o e q : : S u b s c r i b e r g l o b a l (l o c a l) ;

l o c a l . s u b s c r i b e (colorMap) ;
g l o b a l . s u b s c r i b e (camera) ;

whi le (t rue)
l o c a l . r e c e i v e () ; / / u p d a t e s colorMap and camera

Listing 1.3: Subscriber Sharing

the blocking receive operation applies to all receivers in the shared group. Listing 1.3
shows an example of selectively receiving different updates on different input sockets.

HTTP Server The http server is built using cppnetlib [8] for the transport and http pro-
tocol handling. It supports all standard http verbs (GET, POST, PUT, PATCH, DELETE).
It is a zeroeq::Receiver, that is, it can share its receive() update operation with other
subscribers and http servers. Unlike a subscriber, the http server follows the HTTP
request-reply semantics, that is, a request received by a server has to be followed di-
rectly by its reply. To allow asynchronous request processing, the return value from the
request handler is a std::future which is retrieved from an internal thread, thus allowing
the application to continue operations.

The data served by the http server is introspectable, it allows querying the available
endpoints (objects) and the JSON schema [13] for each endpoint. Listing 1.4 shows an
excerpt of the Tide registry, and Listing 1.5 an excerpt of the schema for one of the
exposed objects. This REST API is used by the Tide web interface from Javascript and
to generate remote python APIs.

> GET / r e g i s t r y HTTP / 1 . 0
{
[. . .]

” t i d e / open ” : [”PUT”] ,
” t i d e / o p t i o n s ” : [”GET” , ”PUT”] ,
” t i d e / r e s i z e −window ” : [”PUT”] ,

[. . .]
}

Listing 1.4: HTTP Server Registry

> GET / t i d e / o p t i o n s / schema HTTP / 1 . 0
{
[. . .]

” p r o p e r t i e s ” : {
” a l p h a B l e n d i n g ” : {

” t y p e ” : ” b o o l e a n ”
} ,

[. . .]
}

Listing 1.5: Object JSON Schema

4.2 ZeroBuf

ZeroBuf is a sample implementation of serialization for ZeroEQ. Based on a grammar
closely related to Flatbuffers schemas [7], it generates C++ classes with random set/get
access. All data is stored internally in one continuous memory buffer, which can be
used for the ZeroEQ binary serialization without any copy. The conversion to and from
a JSON representation involves a copy using a std::string. ZeroBuf can store:

– (u)int[8,16,32,64,128] t, float, double and string members
– fixed size arrays and dynamic vectors of static-sized elements (intrinsic members

or composite types)

– static and dynamic sub-classes (composite types of the above)
Example: Static sized ZeroBuf

FBS Schema

namespace	zerobuf.render;	

table	Vector3f	

{	

		x:	float;	

		y:	float;	

		z:	float;	

}	

table	Camera	

{	

		origin:	Vector3f	=	0,	0,	1;	

		lookAt:	Vector3f;	

		up:	Vector3f	=	0,	1,	0;	

}

C++ Code

namespace	render	=	zerobuf::render;	

render::Camera	camera;	

camera.getOrigin()	=	render::Vector3f(0,	0,	1);	

Memory Layout

version x y z version x y z version x y z
lookAt upversion

8 byte 16 byte 24 byte 32 byte 40 byte 48 byte

originExample: Dynamic sized ZeroBuf

FBS Schema

namespace	zerobuf.render;	

table	ImageJPEG	

{	

		data:[ubyte];	

}	

C++ Code

namespace	render	=	zerobuf::render;	

render::ImageJPEG	imageJPEG;	

glReadPixels(…);	

tjCompress2(…,	ptr,	size);	

imageJPEG.setData(ptr,	size);	

Memory Layout

data headerversion
offset size

8 byte 16 byte 24 byte data size + 20 byte

data

Fig. 9: ZeroBuf Examples for static (top) and dynamic (bottom) sized objects

Figure 9 shows two simple ZeroBuf schemas together with example usage of the
generated code in C++ and their memory layout. The static example shows nested Zero-
Buf classes for the camera used in Listing 1.1, and the dynamic example shows how raw
data access is used to prepare a JPEG image for publishing.

4.3 Remote Python API

The remote python API provides easy to use access to remote applications using the http
server. It integrates two features: generic code generation for the REST API exposed by
the application, and automatic resource allocation and application launch.

The generic code generation is implemented in a pure python module, which has no
dependency to the interfaced C++ application. It queries the http server and generates a

python API for all exposed objects. This API can then be conveniently used in python
to remote control the application.

Access to the application is established either through an explicit connection of a
pre-launched application, or via a resource allocator. The allocator hides the details of
allocating a resource, e.g. using a scheduling system like slurm, launching and connect-
ing to the launched application from the python programmer.

Figure 10 shows an example session of using this Python API from a Jupyter note-
book, allocating and launching a Brayns instance, setting relevant rendering parameters
and retrieving an image. Note that the whole notebook runs in a light-weight VM with
no GPU and interacts with a Brayns instance launched on a bare-metal visualization
cluster node.

Fig. 10: Example Jupyter notebook session using Brayns

5 Discussion and Conclusion

We presented a modular visualization architecture for large data visualization over a
wide range of use cases, glued together by a modern and easy to use messaging infras-
tructure. This ecosystem allows us to flexibly support novel use cases, while pushing
novel visualization capabilities, providing Blue Brain with a competitive visualization
infrastructure. Messaging and remote APIs not only surprised us in their versatility and
ease of integration with other ecosystems, but also have a significant potential for future
exploration in classical visualization software. Interactive raytracing is the future ren-
dering algorithm for us, and Brayns is becoming the integration point for our domain-
specific visual applications and algorithms. Tiled display walls are affordable for a large
set of institutions, and coupled with our open source TIDE software create new ways
of truely collaborative work. TIDE, together with cheaper visualization hardware, will
evolve in the future towards a seamless integration of immersive visualization.

Acknowledgments

This publication was supported by the Blue Brain Project (BBP), the Swiss National
Science Foundation under Grant 200020-129525, the King Abdullah University of Sci-
ence and Technology (KAUST) through the KAUST-EPFL alliance for Neuro-Inspired
High Performance Computing, the Spanish Ministry of Science and Innovation under
grant (TIN2010-21289-C02-01/02), the Cajal Blue Brain Project, Hasler Stiftung Pro-
jekt Nr. 12097, and from the European Unions Horizon 2020 research and innovation
programme under grant agreement No 720270 (HBP SGA1). We would also like to
thank the people from GMRV at the Rey Juan Carlos University (URJC) for their col-
laboration under the Cajal Blue Brain and HBP projects.

References

1. Blue Brain Project. Tide: Tiled Interactive Display Environment.
https://github.com/BlueBrain/Tide, 2016.

2. Blue Brain Project. Brayns: Interactive raytracing of neuroscience data.
https://github.com/BlueBrain/Brayns, 2017.

3. T. A. DeFanti, J. Leigh, L. Renambot, B. Jeong, A. Verlo, L. Long, M. Brown, D. J. Sandin,
V. Vishwanath, Q. Liu, M. J. Katz, P. Papadopoulos, J. P. Keefe, G. R. Hidley, G. L. Dawe,
I. Kaufman, B. Glogowski, K.-U. Doerr, R. Singh, J. Girado, J. P. Schulze, F. Kuester, and
L. Smarr. The optiportal, a scalable visualization, storage, and computing interface device
for the optiputer. Future Gener. Comput. Syst., 25(2):114–123, Feb. 2009.

4. K.-U. Doerr and F. Kuester. CGLX: A scalable, high-performance visualization framework
for networked display environments. IEEE Transactions on Visualization and Computer
Graphics, 17(2):320–332, March 2011.

5. S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A scalable parallel rendering
framework. IEEE Transactions on Visualization and Computer Graphics, 15(3):436–452,
May/June 2009.

6. A. Febretti, A. Nishimoto, V. Mateevitsi, L. Renambot, A. Johnson, and J. Leigh. Omegalib:
A multi-view application framework for hybrid reality display environments. In 2014 IEEE
Virtual Reality (VR), pages 9–14, March 2014.

7. Google, Inc. Cross Platform Serialization Library. http://google.github.io/flatbuffers/, 2017.
8. D. M. B. G. M. Google, Inc. The C++ Network Library Project. http://cpp-netlib.org/, 2017.
9. S. Guthe and W. Strasser. Advanced techniques for high-quality multi-resolution volume

rendering. Computers & Graphics, 28(1):51–58, 2004.
10. J. B. Hernando, J. Biddiscombe, B. Bohara, S. Eilemann, and F. Schürmann. Practical Par-

allel Rendering of Detailed Neuron Simulations. In Proceedings of the 13th Eurographics
Symposium on Parallel Graphics and Visualization, EGPGV, pages 49–56, Aire-la-Ville,
Switzerland, Switzerland, 2013. Eurographics Association.

11. A. Johnson, J. Leigh, P. Morin, and P. Van Keken. GeoWall: Stereoscopic visualization for
geoscience research and education. IEEE Computer Graphics and Applications, 26(6):10–
14, November-December 2006.

12. G. P. Johnson, G. D. Abram, B. Westing, P. Navr’til, and K. Gaither. DisplayCluster: An
Interactive Visualization Environment for Tiled Displays. In 2012 IEEE International Con-
ference on Cluster Computing, pages 239–247, Sept 2012.

13. JSON Schema. JSON Schema. http://json-schema.org/, 2017.
14. T. Marrinan, J. Aurisano, A. Nishimoto, K. Bharadwaj, V. Mateevitsi, L. Renambot, L. Long,

A. Johnson, and J. Leigh. SAGE2: A new approach for data intensive collaboration using
Scalable Resolution Shared Displays. In Collaborative Computing: Networking, Applica-
tions and Worksharing, pages 177–186, 2014.

15. S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister,
M. McGuire, K. Morley, A. Robison, and M. Stich. OptiX: A General Purpose Ray Tracing
Engine. ACM Transactions on Graphics, August 2010.

16. I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gnther, and P. Navratil.
OSPRay - A CPU Ray Tracing Framework for Scientific Visualization. IEEE Transactions
on Visualization and Computer Graphics, 23(1):931–940, Jan 2017.

	From Big Data to Big Displays High-Performance Visualization at Blue Brain

