Skip to main content

A Lightweight Prediction Method for Scalable Analytics of Multi-seasonal KPIs

  • Conference paper
  • First Online:
Digital Communication. Towards a Smart and Secure Future Internet (TIWDC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 766))

Included in the following conference series:

Abstract

This paper presents an innovative prediction method for key performance indexes with multiple seasonal profiles. The proposed method, called Multiplicative Multi-Seasonal Model (MSMM) relies on a time series decomposition including multiple multiplicative seasonal profiles and a trend component. The method and its underlying model have been specifically designed to be computationally lightweight to scale to big-data scenarios envisaged in upcoming 5G-NFV environments. The MSMM performance has been evaluated on KPI traces of real operating infrastructures/services, made available by Yahoo! The obtained results outlined how the MSMM prediction method provides more accurate forest than well-known algorithm like the seasonal version of ARIMA, with much reduced computational weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiosi, M., et al.: Network Functions Virtualization: An Introduction, Benefits, Enablers, Challenges & Call For Action, ETSI White Paper, October 2012. http://portal.etsi.org/NFV/NFV_White_Paper.pdf

  2. Matsubara, D., Egawa, T., Nishinaga, N., Kafle, V.P., Shin, M.-K., Galis, A.: Toward future networks: a viewpoint from ITU-T. IEEE Commun. Mag. 51(3), 112–118 (2013)

    Article  Google Scholar 

  3. Corcoran, P.M.: Cloud computing and consumer electronics: a perfect match or a hidden storm? IEEE Consum. Electron. Mag. 1(2), 14–19 (2012)

    Article  Google Scholar 

  4. Matsubara, D., Egawa, T., Nishinaga, N., Kafle, V.P., Shin, M.-K., Galis, A.: Toward future networks: a viewpoint from ITU-T. IEEE Commun. Mag. 51(3), 112–118 (2013)

    Article  Google Scholar 

  5. Peng, M., Li, Y., Zhao, Z., Wang, C.: System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Netw. 29(2), 6–14 (2015)

    Article  Google Scholar 

  6. Matias, J., Garay, J., Toledo, N., Unzilla, J., Jacob, E.: Toward an SDN-enabled NFV architecture. IEEE Commun. Mag. 53(4), 187–193 (2015)

    Article  Google Scholar 

  7. Szabo, R., Kind, M., Westphal, F.J., Woesner, H., Jocha, D., Csaszar, A.: Elastic network functions: opportunities and challenges. IEEE Netw. 29(3), 15–21 (2015)

    Article  Google Scholar 

  8. Hawilo, H., Shami, A., Mirahmadi, M., Asal, R.: NFV: state of the art, challenges, and implementation in next generation mobile networks (vEPC). IEEE Netw. 28(6), 18–26 (2014)

    Article  Google Scholar 

  9. ETSI Network Function Virtualization Management and Orchestration Working Group (NFV MANO WG). http://portal.etsi.org/tb.aspx?tbid=796&SubTB=796

  10. Clayman, S., Maini, E., Galis, A., Manzalini, A., Mazzocca, N.: The dynamic placement of virtual network functions. In: Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, pp. 1–9 (2014)

    Google Scholar 

  11. Sun, X., Ansari, N., Wang, R.: Optimizing resource utilization of a data center. IEEE Comm. Surv. Tutor. 18(4), 2822–2846 (2016)

    Article  Google Scholar 

  12. Katris, C., Daskalaki, S.: Comparing forecasting approaches for internet traffic. Expert Syst. Appl. 42(21), 8172–8183 (2015). Elsevier, ISSN 0957-4174

    Article  MATH  Google Scholar 

  13. Dalmazo, B.L., Vilela, J.P., Curado, M.: Performance analysis of network traffic predictors in the cloud. J. Netw. Syst. Manage. 25(2), 290–320 (2017)

    Article  Google Scholar 

  14. Feng, H., Shu, Y.: Study on network traffic prediction techniques. In: Proceedings of the 2005 International Conference on Wireless Communication Network and Mobile Computing, pp. 1041–1044 (2005)

    Google Scholar 

  15. Koehler, A.B., Snyder, R.D., Keith Ord, J.: Forecasting models and prediction intervals for the multiplicative Holt-Winters method. Int. J. Forecast. 17(2), 269–286 (2001)

    Article  Google Scholar 

  16. Fox, A.J.: Outliers in time series. J. R. Stat. Soc. Ser. B (Methodological) 34(3), 350–363 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 25(1), 1–20 (2013)

    Article  Google Scholar 

  18. Williams, A.W., Pertet, S.M., Narasimhan, P.: Tiresias: black-box failure prediction in distributed systems. In: Proceedings of the 21st International Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, CA, USA, March 2007, pp. 1–8 (2007)

    Google Scholar 

  19. Vlachos, M., Yu, P., Castelli, V.: On periodicity detection and structural periodic similarity. In: Proceedings of the 5th SIAM International Conference on Data Mining (SDM 2005), Newport Beach, CA, USA, April 2005, pp. 449–460 (2005). ISBN:0898715938

    Google Scholar 

  20. Brockwell, P.J., Davis, R.A.: Nonstationary and seasonal time series models. In: Brockwell P.J., Davis R.A. (eds.) Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer, New York (2002). doi:10.1007/0-387-21657-X_6, ISBN 0-387-95351-5

  21. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts Ed., Heathmont (2016). Sect. 8.8, ISBN: 978-0987507105

    Google Scholar 

  22. Chatfield, C., Yar, M.: Prediction intervals for multiplicative Holt-Winters. Int. J. Forecast. 7(1), 31–37 (1991). Elsevier, ISSN 0169-2070

    Article  Google Scholar 

  23. Laptev, N., Amizadeh, A., Billawala, Y.: Yahoo labs news: announcing a benchmark dataset for time series anomaly detection, March 2015. http://labs.yahoo.com/news/announcing-a-benchmark-datasetfor-time-series-anomaly-detection

Download references

Acknowledgment

This work was supported by the INPUT (In-Network Programmability for next-generation personal cloUd service supporT) project, funded by the European Commission under the Horizon 2020 Programme (Grant no. 644672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bruschi, R., Burgarella, G., Lago, P. (2017). A Lightweight Prediction Method for Scalable Analytics of Multi-seasonal KPIs. In: Piva, A., Tinnirello, I., Morosi, S. (eds) Digital Communication. Towards a Smart and Secure Future Internet. TIWDC 2017. Communications in Computer and Information Science, vol 766. Springer, Cham. https://doi.org/10.1007/978-3-319-67639-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67639-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67638-8

  • Online ISBN: 978-3-319-67639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics