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Abstract. Motion estimation of organs in a sequence of images is im-
portant in numerous medical imaging applications. The focus of this pa-
per is the analysis of 4D Respiratory Correlated Computed Tomography
(RCCT) Imaging. It is hypothesized that the quasi-periodic breathing
induced motion of organs in the thorax can be represented by defor-
mations spanning a very low dimension subspace of the full infinite di-
mensional space of diffeomorphic transformations. This paper presents a
novel motion estimation algorithm that includes the constraint for low-
rank motion between the different phases of the RCCT images. Low-rank
deformation solutions are necessary for the efficient statistical analysis
and improved treatment planning and delivery. Although the application
focus of this paper is RCCT the algorithm is quite general and applicable
to various motion estimation problems in medical imaging.
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1 Introduction

In this paper we consider the image registration problem for a set of images
acquired over the breathing cycle by Respiratory Correlated Computed Tomog-
raphy (RCCT). This problem has widespread medical applications, in particular
4D radiation therapy for lung cancer patients which considers lung deformations
during treatment planning and delivery. Fundamental to the application of 4D
motion modeling to improve radiation treatment planning and delivery is the sta-
tistical analysis of organ motion which can vary significantly from one breathing
cycle to another [6]. Shown in Fig. 1 is a sample breathing trace captured by an
abdominal belt in lung cancer radiation treatment patient. This cycle-to-cycle
variability has recently been accounted for by live surface tracking methods in
conjunction with Principal Component Analysis (PCA) of the deformation fields
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to develop a low dimensional representation of the motion (usually two). The
use of Principal Component Analysis (PCA) to draw statistical relations be-
tween surface tracking data and RCCT is inherently lossy due to truncation of
deformation fields to the few largest principal components [6,12].
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Fig. 1. Breathing waveform of a RCCT subject. Variation in breathing intensity, rate,
and pattern is apparent between respiratory cycles.

We extend pairwise weighted density matching first developed by Rottman
et al. [10] for application to statistical analysis of the breathing cycle by incor-
porating a direct constraint on the rank of the estimated deformations and by
considering an entire image series in single optimization problem. This method
allows for the preservation of more descriptive deformations in downstream sta-
tistical processing that is dependent upon the rank of the deformation fields.
Physiologically, the basis of density matching provides for tissue expansion and
compression to occur within the lung while the low-rank optimization relates mo-
tion between all images in the series to describe the basic inhale-exhale breathing
process very well, along with respiratory hysteresis.

Although the rank constraint introduced in this paper is applicable to any
image registration algorithm, we focus on the Diffeomorphic Density Matching
framework. Density matching has previously been show to be very effective in
pairwise RCCT image registration [10]. Considering the image volumes as den-
sities provides the mathematical foundation to consider conservation of mass
between images. Density action of the deformation on the image provides a
mechanism through which compression of tissue results in an increased reported
density by the deformed CT image, or vice-versa with tissue expansion [1]. This
mathematical foundation also provides an efficient method for diffeomorphic reg-
istration, as integration of geodesic equations is avoided (contrary to methods
like LDDMM [3]).
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2 Low Rank Motion Estimation

Our problem extends the diffeomorphic density matching problem [11] to find
a set of diffeomorphic transformations between one base image and a set of re-
lated images which exist in a low-rank subspace of the space of diffeomorphisms,
Diff(Ω).

Measuring the rank of the set of deformations is accomplished by the surro-
gate nuclear norm of the deformation matrix [9]. Formal rank of the matrix, the
number of non-zero eigenvalues, is avoided due to the non-smooth nature of the
rank function. Instead, the nuclear norm serves as a convex surrogate function.
The nuclear norm for a matrix X is defined as

‖X‖∗ = trace
(√

X∗X
)

=

min{m,n}
∑

i

σi (X) (1)

σi is the i-th singular value of the m×n matrix X . Note that the singular values
σi are positive. We interpret each vectorized deformation field as a row of this
matrix,

X =











ϕ−1

1 (x) − x

ϕ−1

2 (x) − x
...

ϕ−1

N−1
(x)− x











= {ϕ−1

i (x)− x} (2)

where ϕ−1

i is the inverse of the deformation from the i-th image in the image
series to a selected reference image. We can thus define the nuclear norm for
deformations between N images as

‖X‖∗ =

N−1
∑

i

σi (X) (3)

as there are N − 1 deformations between N images, giving only N − 1 singular
values. The nuclear norm measure on this grouped deformation matrix effectively
constrains the rank of the deformation set because of the summation of the
singular values.

The rank minimization builds upon the density matching framework, sum-
marized here for completeness [1,10]. A density or volume form I dx is acted
upon by a diffeomorphism ϕ to compensate for changes of the density by the
deformation:

(ϕ, I dx) 7→ ϕ∗ (I dx) =
(

ϕ−1
)∗

(I dx) =
(

|Dϕ−1|I ◦ ϕ−1
)

dx (4)

where |Dϕ−1| denotes the Jacobian determinant of ϕ−1. The Riemannian geom-
etry of the group of diffeomorphisms with a suitable Sobolev H1 metric is linked
to the Riemannian geometry of densities with the Fisher-Rao metric [1,5,7]. The



4 M. Foote et al.

Fisher-Rao metric is used due to the property that it is invariant to the action
of diffeomorphisms:

d2F (I0 dx, I1 dx) =

∫

Ω

(

√

I0 −
√

I1

)2

dx . (5)

The linkage between a suitable Sobolev H1 metric and the Fisher-Rao metric
allows for evaluation of the distance in the space of diffeomorphisms in closed
form. The Fisher-Rao metric and an incompressibility measure can then be used
to match an image pair by minimizing the energy functional:

E (ϕ) =

∫

Ω

(

√

|Dϕ−1| I1 ◦ ϕ−1 −
√

I0

)2

dx +

∫

Ω

(

√

|Dϕ−1| − 1
)2

f dx . (6)

The first term here penalizes dissimilarity between the two densities. The second
term penalizes deviations from a volume-preserving deformation. The penalty
function f acts as weighting of the volume-preserving measure. A change of
volume is penalized more (or less) where f is large (or small).

This problem has been solved by taking the Sobolev gradient of this energy
functional and performing Euler integration of the gradient flow [10]:

δE = −∆−1

(

−∇
(

f ◦ ϕ−1

(

1−
√

|Dϕ−1|
))

−
√

|Dϕ−1|I1 ◦ ϕ−1∇
(

√

I0

)

+∇
(

√

|Dϕ−1|I1 ◦ ϕ−1

)

√

I0

)

(7)

ϕ−1

j+1 (x) = ϕ−1

j (x+ ǫδE) (8)

We approach the rank constrained density matching problem by including
the nuclear norm measure of the deformation fields matrix in the minimization
problem and extending pairwise matching to the collective matching of a group
of images to the reference image. We therefore seek to solve the following:

min
{ϕ−1

i
}

N−1
∑

i

∫

Ω

(

√

∣

∣Dϕ−1

i

∣

∣ Ii ◦ ϕ−1

i −
√

I0

)2

dx +

∫

Ω

(

√

∣

∣Dϕ−1

i

∣

∣− 1

)2

f dx

s.t.
∥

∥{ϕ−1

i (x)− x}
∥

∥

∗
< k

(9)
where I0 is a chosen base or reference image and Ii are the other N−1 images in
the series. We re-frame the rank constraint as a Lagrange multiplier to include
the nuclear norm rank measure as a penalty function. This formulation allows us
to directly apply the rank minimization strategies such as the iterative shrinkage-
thresholding algorithm (ISTA) outlined by Cai et al. [4]. Our problem can thus
be written as the minimization of the following energy functional:

E({ϕi}) =
N−1
∑

i

[

∫

Ω

(

√

∣

∣Dϕ−1

i

∣

∣ Ii ◦ ϕ−1

i −
√

I0

)2

dx

+

∫

Ω

(

√

∣

∣Dϕ−1

i

∣

∣− 1

)2

f dx

]

+ α

N−1
∑

i

σi

(

{ϕ−1

i (x)− x}
)

. (10)



Rank Constrained Motion Estimation 5

3 Singular Value Thresholding and Implementation

In this section we describe in detail our implementation of the solution to (9)
by the ISTA algorithm, with special consideration for efficient acceleration by
GPGPU programming through the PyCA software package [8].

This problem seeks to minimize the singular values of the deformations, so we
perform ISTA [4] on the singular value decomposition of the ideal H1 gradient of
the diffeomorphisms. The shrinkage-thresholding algorithm is employed by the
shrinkage operator [4]:

Dτ (Σ) = diag ({σi − τ}+) (11)

where the singular value decomposition is noted as X = UΣV ∗, thus the shrink-
age acts only on the singular values, and t+ = max(0, t).

The solution to (9) can therefore be found through an ISTA approach by
first finding an optimal update for the density matching problem of each image
pair, then performing the shrinkage operation on singular values of the updated
fields, and finally replacing the deformations with reconstructions by SVD of the
shrunken singular values. In our implementation, we choose to perform SVD on
the deformation gram matrix XX∗, as our GPU image processing library lacks
an SVD algorithm. This allows for accelerated computation of the gram matrix
instead of an accelerated SVD, and only a small penalty for performing SVD
on a small 9 × 9 matrix on the host CPU. Combining the solution to a single
density matching problem with our singular value thresholding algorithm gives
the algorithm:

Algorithm 1 GPU Accelerated Algorithm

Choose step size ǫ > 0
Choose rank weighting parameter α > 0
Set ϕ−1

i
= id

Set
∣

∣Dϕ−1

i

∣

∣ = 1
for iter = 1 .. NumIter do

for i = 1 .. N − 1 do

Compute ϕ∗iIi = Ii ◦ ϕi

Compute u = −∇
(

f ◦ ϕ−1

i
(1 −

√

|Dϕ−1

i
|)
)

−√
ϕ∗iIi∇

√
I0 + ∇(

√
ϕ∗iIi)

√
I0

Compute v = −∆−1(u)
Update ϕ−1

i
→ ϕ−1

i
(x + ǫv)

end for

Compute K = XX∗

Compute UΣV
∗ = K on host CPU

Compute W = UDǫα(Σ) on host CPU
Update {ϕ−1

i
} → WX + x

Compute
∣

∣Dϕ−1

i

∣

∣

end for
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We further accelerate the above algorithm by implementing a multi-scale
approach. Rather than use the full resolution data from initialization, the algo-
rithm is instead initialized at a lower resolution with down-sampled data. After
convergence at the lower resolution, a lower down-sampling factor is selected,
resulting in a resolution closer to full resolution. At each scale level change the
current deformation field estimates are up-sampled to the new scale and the data
is again down-sampled from the original, full resolution images. The final scale
level is at the same resolution of the original data.

This multi-scale approach requires two special considerations for tracking
the energy being minimized. First, as the volume of a voxel is not constant, the
penalties from a voxel must be scaled by the current voxel volume. In other
words, the energy must be considered volumetrically, not simply as a data grid.
Second, the gram matrix K must be divided by the number of voxels, as a scale
change results in the summation over millions more voxels of the deformation
fields which would otherwise greatly increase the singular values. Inclusion of
these two scale-dependent factors allows the total energy of (10) to be tracked
over the multiple scale levels without massive increases when the scale level is
changed.

4 Application to Respiratory 4DCT Phase Registration

A RCCT of a radiotherapy patient was acquired at University of Maryland
and provided as 10 respiratory phase-binned images. The full exhale image was
chosen as the reference image for the registration problem. Image intensities
were modified with an exponential function as in [11] to transform the intensity
such that the volume exhibits conservation of mass. The final deformations were
computed at the resolution of the original 3D volume (320× 256× 144); all the
figures show the same middle sagittal, coronal, and axial slices of the volume.

For the compressibility penalty f , we used a soft thresholding of the intensity
values of the base image using the logistic function. High intensity regions were
penalized with 5σ as dense, incompressible tissue, and vice-versa for low intensity
regions (0.2σ). The incompressibility parameter, σ, was set at 0.01 for all runs.
The algorithm was implemented on a single Nvidia GTX Titan X GPU, which
runs 1000 iterations of the full-resolution volume in approximately 17 minutes
for all 10 images. Lower scales of the multi-scale optimization run significantly
faster, mainly due to the O(n2) complexity of calculating the gram matrix.

Deformations were calculated from each of the 9 other images with rank
weighting parameter α of 0, 0.01, 0.02, and 0.05. Figure 2 shows the result of
registration for one of the nine pairings, full inhale to full exhale. These deforma-
tions have geometric accuracy similar to that attained by the density matching
without a rank constraint, as measured by the DICE coefficient between refer-
ence and deformed volumes (Fig. 3).

Deformations resulting from the rank constrained algorithm are physiolog-
ically relevant, as with previous density matched results, because compression
occurs predominantly within the lung tissue. Additionally, the confinement to
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Fig. 2. Registration results for α = 0.01. Top row: Full inhale image, full exhale im-
age, and registered inhale image to exhale. Bottom row: Jacobian determinant of the
deformation to full exhale, energy plot, and penalty function for density matching algo-
rithm. Note the energy plot shows three scale levels of a multi-scale run; the increase at
2000 is due to the first two scale levels having a blurring applied in the down-sampling
procedure which removes noise in the data.
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Fig. 3. DICE coefficients for registration results with various rank weightings, α.
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a low-rank subspace of deformations requires relation to develop between the
deformation fields, resulting in linkage of the generally reverse relation between
inhalation and exhalation. This added rank constraint results in even better geo-
metric accuracy of some motion estimates as measured by the DICE coefficients.

Increased weighting of the rank term in the minimization problem produces
sets of deformations that can be explained by fewer principal components (Fig.
4). The resulting deformations preserve geometric accuracy better when using
PCA to truncate the deformation fields to the largest principal components.
The average GTV DICE coefficient across all phases is shown for each number
of principal components included in the reconstructed deformation field for a
motion estimate performed with and without rank constraint in Fig. 5. Further
increase of the rank weighting (such as 0.05), while effective at minimizing rank,
causes significant loss in the anatomical accuracy of the deformation estimates
(Fig. 3).
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0.00

0.01

0.02

0.05

Rank Weighting

Fig. 4. Normalized cumulative sum of singular values for registration results with var-
ious rank weightings, α. This effectively shows the percentage of the deformation fields
that are explained by a number of principal components. Increased rank weighting
produces deformations well-described by fewer principal components.
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Fig. 5. DICE Coefficients averaged across phases after reconstruction of deformations
using a variable number of principal components. Including an appropriate rank con-
straint in the minimization results in more accurate deformation fields after a statistical
truncation of the lower principal components.

5 Discussion

In this paper, we have shown that including rank minimization in the motion
estimation problem improves deformation accuracy in later statistical analysis
while improving anatomic accuracy. We implemented ISTA to minimize the rank
of the deformations between a set of CT images throughout a breathing cycle.
In particular, a rank weighting of 0.01 produces better overall geometric accu-
racy with a significant shift in the rank of the deformations which preserves
the deformation accuracy through PCA treatment planning procedures. The ge-
ometric accuracy improvement may arise from increased physiologic relevance
of the low-rank deformations matching well with the general reversal process
of an inhale-exhale cycle, along with hysteresis in other components. Substan-
tial improvement in speed of our algorithm could be achieved by implementing
a FISTA technique [2]. Additional parallelization from upcoming multi-GPU
systems would provide a speedup with low complexity increase, as the density
matching portion of the algorithm is completely independent between phases.
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3. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing Large De-
formation Metric Mappings via Geodesic Flows of Diffeomorphisms.
International Journal of Computer Vision 61(2), 139–157 (feb 2005),
http://link.springer.com/10.1023/B:VISI.0000043755.93987.aa

http://arxiv.org/abs/1501.07635{%}0Ahttp://dx.doi.org/10.1137/151006238 http://epubs.siam.org/doi/10.1137/151006238
http://link.springer.com/10.1023/B:VISI.0000043755.93987.aa


10 M. Foote et al.

4. Cai, J.F., Candès, E.J., Shen, Z.: A Singular Value Thresholding Algorithm for
Matrix Completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010),
http://epubs.siam.org/doi/10.1137/080738970

5. Khesin, B., Lenells, J., Misio lek, G., Preston, S.C.: Geometry of Dif-
feomorphism Groups, Complete integrability and Geometric statis-
tics. Geometric and Functional Analysis 23(1), 334–366 (feb 2013),
http://link.springer.com/10.1007/s00039-013-0210-2

6. Li, R., Lewis, J.H., Jia, X., Zhao, T., Liu, W., Wuenschel, S., Lamb,
J., Yang, D., Low, D.A., Jiang, S.B.: On a PCA-based lung motion
model. Physics in Medicine and Biology 56(18), 6009–6030 (sep 2011),
http://stacks.iop.org/0031-9155/56/i=18/a=015?key=crossref.2101ba1e0fc5d7788678ba73f94eef52

7. Modin, K.: Generalized HunterSaxton Equations, Optimal Information Transport,
and Factorization of Diffeomorphisms. The Journal of Geometric Analysis 25(2),
1306–1334 (apr 2015), http://link.springer.com/10.1007/s12220-014-9469-2

8. Preston, J., Hinkle, J., Singh, N., Rottman, C., Joshi, S.: PyCA: Python for Com-
putational Anatomy, https://bitbucket.org/scicompanat/pyca

9. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed Minimum-Rank Solutions of Linear
Matrix Equations via Nuclear Norm Minimization. SIAM Review 52(3), 471–501
(jan 2010), http://epubs.siam.org/doi/10.1137/070697835

10. Rottman, C., Bauer, M., Modin, K., Joshi, S.C.: Weighted Diffeomorphic Density
Matching with Applications to Thoracic Image Registration. 5th MICCAI Work-
shop on Mathematical Foundations of Computational Anatomy (MFCA 2015) pp.
1–12 (2015)

11. Rottman, C., Larson, B., Sabouri, P., Sawant, A., Joshi, S.: Diffeomorphic Density
Registration in Thoracic Computed Tomography. In: Ourselin, S., Joskowicz,
L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2016: 19th International Conference,
Athens, Greece, October 17-21, 2016, Proceedings, Part III, Lecture Notes in
Computer Science, vol. 9902, pp. 46–53. Springer International Publishing (2016),
http://link.springer.com/10.1007/978-3-319-46726-9{_}6http://dx.doi.org/10.1007/978-3-319-46726-9{_}6

12. Sabouri, P., Foote, M., Ranjbar, M., Tajdini, M., Mossahebi, S., Joshi, S.,
Sawant, A.: A Novel Method Using Surface Monitoring to Capture Breathing-
Induced Cycle-To-Cycle Variations with 4DCT. In: 59th Annual Meeting of
The American Association of Physicists in Medicine. Denver, CO (2017),
http://www.aapm.org/meetings/2017AM/PRAbs.asp?mid=127{&}aid=37742

http://epubs.siam.org/doi/10.1137/080738970
http://link.springer.com/10.1007/s00039-013-0210-2
http://stacks.iop.org/0031-9155/56/i=18/a=015?key=crossref.2101ba1e0fc5d7788678ba73f94eef52
http://link.springer.com/10.1007/s12220-014-9469-2
https://bitbucket.org/scicompanat/pyca
http://epubs.siam.org/doi/10.1137/070697835
http://link.springer.com/10.1007/978-3-319-46726-9{_}6 http://dx.doi.org/10.1007/978-3-319-46726-9{_}6
http://www.aapm.org/meetings/2017AM/PRAbs.asp?mid=127{&}aid=37742

	Rank Constrained Diffeomorphic Density Motion Estimation for Respiratory Correlated Computed Tomography

