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Abstract

This paper presents an efficient, numerically stable algorithm for parallel transport of tangent 

vectors in the group of diffeomorphisms. Previous approaches to parallel transport in large 

deformation diffeomorphic metric mapping (LDDMM) of images represent a momenta field, the 

dual of a tangent vector to the diffeomorphism group, as a scalar field times the image gradient. 

This “scalar momenta” constraint couples tangent vectors with the images being deformed and 

leads to computationally costly horizontal lifts in parallel transport. This paper uses the vector 

momenta formulation of LDDMM, which decouples the diffeomorphisms from the structures 

being transformed, e.g., images, point sets, etc. This decoupling leads to parallel transport 

expressed as a linear ODE in the Lie algebra. Solving this ODE directly is numerically stable and 

significantly faster than other LDDMM parallel transport methods. Results on 2D synthetic data 

and 3D brain MRI demonstrate that our algorithm is fast and conserves the inner products of the 

transported tangent vectors.

1 Introduction

Analysis of anatomical shape changes from longitudinal medical imaging requires 

comparing the changes over time of subjects in disparate groups. For instance, imaging 

studies have shown that the hippocampi of subjects with Alzheimer’s disease atrophy 

significantly more over time than those of healthy aging subjects. Trajectories of anatomical 

shape change can be estimated from sequences of images using regression methods in the 

space of diffeomorphisms. When trajectories are modeled as geodesics, they can be 

represented by their initial velocity. However, these velocities are defined with respect to 

different coordinate systems associated with the baseline image of each subject. As such, 

they are not directly comparable. In order to perform statistical analysis of these trajectories, 

multiple researchers have proposed using parallel transport to bring these subject-specific 

trajectories into a common coordinate system for comparison.

One of the preferred techniques for analyzing images in this context is large deformation 

diffeomorphic metric mapping (LDDMM) [2], which is a mathematical framework for 

finding smooth diffeomorphic transformations between images. The main benefits of 

LDDMM are that the deformations between images are smooth and invertible and that a 

metric allows distances between diffeomorphisms to be computed in a meaningful way. 

Existing methods for parallel translation within the LDDMM setting work well in practice 

and have been used for longitudinal shape analysis [11, 12]. However, these approaches 

require computing horizontal lifts at each time step, an expensive computation involving 
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solving a linear system for the scalar momenta using an iterative conjugate gradient method 

[16]. Additionally, these methods approximate each time step of parallel transport with a 

short time step evolution of Jacobi fields. Instead of that approximation, this paper works 

directly with the parallel translation equation.

Another method [4, 5] uses a sparse parameterization of the diffeomorphism by using 

control points. Other approaches involve using stationary velocity fields (SVFs) to generate 

the diffeomorphisms. These methods use Schild’s ladder to approximate parallel transport 

along a curve by taking small steps in the associated tangent space at each time [6]. 

However, as each rung of Schild’s ladder requires two imperfect, computationally-intensive 

image registrations, the Schild’s ladder steps are then further approximated using the Baker-

Campbell-Hausdorff (BCH) formula. This results in fast parallel transport, however, much 

like the Jacobi field approximation for LDDMM [16], each time step is an approximation to 

the direct parallel transport equation. Also, the SVF formulation is different from LDDMM 

in that it does not result in a distance metric on the space of diffeomorphisms.

This paper uses the vector momenta [13] formulation of LDDMM to decouple the 

diffeomorphisms from the image data. This decoupling allows us to work in the full Lie 

algebra of the space of diffeomorphisms, and we can then directly implement the parallel 

translation equations in terms of right-invariant tangent vectors to this space of 

diffeomorphisms. This results in a linear ordinary differential equation (ODE) that can be 

solved with a standard, numerically stable scheme that avoids the need to perform 

computationally-expensive horizontal lifts to the constraint of scalar momenta, as is done in 

[16]. Additionally, we use the Fourier approximations of vector fields from [17] to gain 

more numeric stability as well as a more efficient algorithm.

We perform experiments with 2D synthetic data and 3D brain MRIs in order to show the 

effectiveness of our approach and demonstrate that we can transport realistic vector fields 

even for quite large deformations. Our results show that our approach is quite fast, indeed it 

is two orders of magnitude faster than the LDDMM image matching that is also performed 

using the efficient Fourier-approximated vector fields. Additionally, we demonstrate 

conservation of the inner product of the tangent vectors being transported. This approaches 

nearly exact conservation as we increase the number of time steps in the numerical 

integration scheme.

2 Background on Diffeomorphisms and LDDMM

We provide a brief review of diffeomorphisms, associated Lie group operators and the 

LDDMM formulation, highlighting the math relevant to parallel transport of 

diffeomorphisms and the links to diffeomorphic image registration.

2.1 Diffeomorphisms

Let Ω = ℝd/ℤd be a d-dimensional toroidal image domain. A toroidal domain is the natural 

setting for defining the Fourier transform and assuming cyclical boundary conditions. A 

diffeomorphism of Ω is a bijective, C∞ mapping ϕ : Ω → Ω whose inverse, ϕ−1, is also C∞. 
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We will denote the space of all such diffeomorphisms as Diff(Ω). We are particularly 

interested in time-varying diffeomorphisms, ϕ(t, x) : [0, 1] × Ω → Ω, which can be 

generated as flows of time-varying velocity fields v(t, x) : [0, 1] × Ω → ℝd. These will be 

referred to in this paper as ϕt(x) and vt(x), where t ∈ [0, 1] and x ∈ Ω. Note that ϕt(x) is 

generated by the flow t ↦ ϕt ∈ Diff(Ω) by integrating the ODE

dϕt
dt = vt ∘ ϕt . (1)

We know that Diff(Ω) is an infinite-dimensional Lie group, whose associated Lie algebra, V 
= (Ω), consists of all C∞ vector fields on Ω. For two vector fields v,w ∈ V, the Lie bracket 

is defined as [v,w] = Dv · w − Dw · v. Here D is the first derivative operator and · is element-

wise matrix-vector multiplication.

In order to define distances on the manifold Diff(Ω), we need an appropriate Riemannian 

metric. Here we use a weak metric

〈v, w〉V = ∫
Ω

〈Lv(x), w(x)〉 dx, (2)

where L : V → V is a positive-definite, self-adjoint differential operator. In this paper, L is 

chosen to be a Laplacian operator of the form L = (−αΔ+I)c where α > 0, c > 0 and I is the d 
× d identity matrix. In order to compute the inner product of vector fields v and w that 

belong to the tangent space of any other element ϕ ∈ Diff(Ω), we need to pull back the 

velocities to the tangent space at identity by using a right-invariant metric such as

〈v, w〉Tϕ Diff(Ω) = 〈v ∘ ϕ−1, w ∘ ϕ−1〉V . (3)

Then the distance between ϕ and id becomes

dist(id, ϕ) = ∫
0

1
‖vt‖V

dt . (4)

2.2 LDDMM Image Registration

For the image registration application, we will be looking at how to find an optimal 

diffeomorphism that takes us from image I0 to image I1, where optimal will mean that the 

diffeomorphism is as small as possible and that I0 ∘ ϕ1
−1 is as close to I1 as possible. The 
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LDDMM formulation will formulate this problem as an energy-minimization problem. 

Before we get to the more specific notion of diffeomorphisms acting on images, we look at 

the geodesic equations in the general Lie group setting.

First, we will need to define some fundamental operators from Lie group theory. We define 

the adjoint action of Diff(Ω) on (Ω), Adψ : V → V , as

Adψ(v) = d
dt (ψ ∘ ϕt ∘ ψ−1) ∣

t = 0, (5)

where ϕ0 = id and dϕ
dt ∣

t = 0
= v. Note that if ϕt and ψ commuted, we would simply end up 

with ϕt, thus Adψ is evaluating how well all infinitesimal deformations commute with ψ. 

Now we let ψ be time-varying and we define the adjoint action, ad, of (Ω) on itself by

aduv = d
ds (Adψs

v) ∣
s = 0

, (6)

where ψ0 = id and dψ
ds ∣

s = 0
= u. In the case of the Lie group Diff(Ω), the adjoint action is 

given by the formula

aduv = [u, v] = Du · v − Dv · u . (7)

For the energy optimization, we will use results from Arnold [1] and Miller et al. [9] that 

show that geodesics are extremal curves that satisfy the Euler-Poincaré equations for 

diffeomorphisms (EPDiff):

dvt
dt = − advt

† wt, (8)

where ad†, the adjoint of the ad operator, is

advt
† wt = K (Dvt)

TLwt + D(Lwt)vt + Lwt div vt . (9)

Here div denotes the divergence operator. The process of finding the unique geodesic path, 

ϕt by integrating an initial velocity, v0 ∈ V at t = 0 forward in time according to (8) is known 

as geodesic shooting.

Campbell and Fletcher Page 4

Graphs Biomed Image Anal Comput Anat Imaging Genet (2017). Author manuscript; available in PMC 2018 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Now let’s look more specifically at diffeomorphisms acting on images I ∈ L2(Ω,ℝ), meaning 

that images are square-integrable functions defined on Ω. Diffeomorphic image registration 

is looking for a vt that minimizes an energy function, E(vt), that measures how well I0 ∘ ϕ1
−1

matches I1 while preferring small diffeomorphisms by adding a regularization term.

E(vt) = 1
2σ2‖I0 ∘ ϕ1

−1 − I1‖
L2
2 + ∫

0

1
‖vt‖V

2 dt, (10)

where σ2 represents image noise variance.

Vialard et al. [14] and Younes et al. [15] showed that it is only necessary to estimate the 

initial velocity, v0. Therefore, we can rewrite (10) as

E(v0) = 1
2σ2‖I0 ∘ ϕ1

−1 − I1‖
L2
2 + ‖v0‖

V
2 , s.t. EPDiff (8) holds. (11)

2.3 Decoupling Diffeomorphisms from Images

In the original LDDMM formulation, Beg et al. [2] showed that the initial vector fields that 

are minimizers of the diffeomorphic image registration energy (11) are of the form v̂0 = 

K(s∇I0), where s : Ω → ℝ is a scalar field. In other words, the initial momenta m0 = Lv0 = 

s∇I0 is constrained to be a scalar field times the image gradient. The scalar momenta 

constraint was also used in the derivation of geodesic shooting by Vialard [14]. This 

constraint has the practical benefit that it reduces the size needed to represent the initial 

conditions, i.e., we can discretize the scalar field s, rather than the vector field v0. However, 

Singh et al. [13] showed that removing the scalar momenta constraint, that is, optimizing 

over initial momenta m0 that are vector fields, was more numerically stable and converged to 

better local optima of the target energy.

Removing the scalar momenta constraint also has the effect of decoupling the 

diffeomorphisms from the images that they are acting on. This decoupling has advantages in 

Bayesian formulations of diffeomorphic image registration and atlas building, as developed 

by Zhang et al. [19]. In this approach, the decoupling enables formulation of 

diffeomorphisms as latent random variable with a prior that does not depend on the images 

(data) in any way. Furthermore, elements of the Lie algebra V are spatially smooth vector 

fields, and as such, are easier to deal with numerically than non-smooth momenta fields. 

Zhang and Fletcher [17] used this fact to show that initial velocities could be efficiently 

represented in the Fourier domain by low-frequency approximations, resulting in much 

faster image registration and even better optimization of the LDDMM energy. Similarly, we 

show in the next section that parallel translation benefits from this same decoupling of the 

diffeomorphisms from images. By working in the full Lie algebra of the space of 

diffeomorphisms, we can directly implement the equations for parallel translation in terms 
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of right-invariant tangent vectors to Diff(Ω). As such, we avoid the need to perform 

computationally-expensive horizontal lifts to the constraint of scalar momenta, as used in 

[16]. We are also able to use the Fourier approximations of vector fields from [17]. The end 

result is an efficient and numerically stable algorithm for directly computing parallel 

transport in the space of diffeomorphisms.

3 Parallel Transport

In order to do comparisons of trajectories defined by geodesic segments in the space of 

diffeomorphisms, we need a way to bring the initial velocities of these geodesics to the same 

reference point. One mechanism to do so is called parallel transport, a generalization of the 

Euclidean notion of parallel translation of one vector to the origin of another. When this 

happens in Euclidean space, the angle between the vectors is preserved and the magnitude of 

the vector is preserved. We will see below that parallel transport along a geodesic on a 

Riemannian manifold similarly preserves the inner product of the transported vector to the 

tangent vector of the geodesic and also preserves the norms of the transported vector and the 

tangent vector.

In this section, we will start from the definition of parallel transport on general Lie groups 

and then look more specifically at parallel transport on the manifold of diffeomorphisms, 

Diff(Ω). Then we will do a computational complexity analysis of parallel transport. We’ll 

also talk about details related to implementing parallel transport of diffeomorphisms on a 

computer, including numerical integration details and using a Fourier-approximated Lie 

algebra to speed up the discrete computation.

3.1 Parallel Transport Equation

Let’s start by looking generally at right-invariant vector fields v and w on a Lie group. We 

can look at how w varies in the direction v by looking at the covariant derivative ∇vw. 

Parallel transport of a tangent vector along a curve is defined by this covariant derivative of 

the transported vector being zero in the direction of the velocity of the curve. The covariant 

derivative for right-invariant vector fields (c.f. [3]) is given by the equation

∇vw = − 1
2 adv

†w + adw
† v − advw . (12)

For our application, we want to transport along a curve ϕt in the space of diffeomorphisms. 

Remember that (1) says the change in ϕt over time is equal to a time-varying velocity field vt 

composed with ϕt. Let’s plug these time-varying right-invariant vector fields into (12) to get 

the following:

∇vt
wt =

dwt
dt − 1

2 advt
† wt + adwt

† vt − advt
wt , (13)
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where the dwt/dt comes from needing to take the total derivative since wt varies with time. 

Let’s set this covariant derivative to 0 and substitute the definitions for advtwt and advt
† wt

from (7) and (9) to get:

dwt
dt = − 1

2(K [(Dvt)
TLwt + D(Lwt)vt + Lwt div vt] + K [(Dwt)]

TLvt + D(Lvt)wt + Lvt div wt

] − Dvtwt + Dwtvt) .

(14)

Notice that this becomes the geodesic equation when wt = vt.

3.2 Computational Complexity Analysis

The computational complexity of solving (14) is O(NM logM) where M is the number of 

voxels in the image and N is the number of time steps taken. If we instead solve (14) in the 

Fourier-approximated space, the complexity improves to O(Nmlogm), where m is number of 

frequencies used in the reduced space. We use m = 163 in the real data experiments below. 

Note that computing Jacobi fields in the Lie algebra would be the same complexity. But our 

method avoids computing the horizontal lifts needed in order to enforce the scalar momenta 

constraint used by other LDDMM parallel transport methods. These horizontal lifts involve 

solving an M-dimensional system of linear equations using an iterative conjugate gradient 

method.

3.3 Implementation Details

In order to gain the performance benefits from performing operations in the Fourier-

approximated Lie algebra (FLASH) [17], we implemented parallel translation in the Flash C

++ environment [18], which is built on top of PyCA [10]. Additionally, we implemented a 

more accurate numerical integration scheme for both forward integrating v0 at each time 

step t = 1/N, 2/N..., 1 and for solving the parallel translation ODE (13) numerically using N 
time steps. We provide both an Euler first-order scheme and a Runge-Kutta fourth-order 

(RK4) scheme to perform these integrations, with the RK4 integration happening 

independently for wt and vt. Ideally, since wt and vt are coupled, the integration would be 

even more accurate by doing a coupled symplectic integration scheme. Below we run 

experiments in order to find a reasonably small N that gives good enough stability.

4 Experiments

We ran experiments with both synthetic images and real 3D MR images of human brains to 

explore the accuracy, stability and speed of our parallel translation approach. In all of our 

experiments, we follow the same general setup. First we use Flash C++ to do image 

matching between two time points of the first subject, I0 and In, to find a diffeomorphism 
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between the two images represented by an initial velocity w0n. Then we do image matching 

between the first subject, I0 and the template image, T0 to find a diffeomorphism between 

the subject and the template represented by the initial velocity v0. At this point, we parallel 

translate w0n in the direction of v0 to get the translated diffeomorphism represented by the 

initial velocity π(w0n) as shown in Figure 1. The values 〈Lv, v〉, 〈Lv,w〉, and 〈Lw,w〉, while 

different from each other, should each remain constant throughout integration. We measure 

the percent change of these inner products at each time step of the integration in order to 

quantify the stability.

4.1 Synthetic Data

We modeled our synthetic data experiments to follow the approach of Lorenzi and Pennec 

[7] that was also used by [8]. These experiments consist of 2D images of size 256 x 256 

pixels. The subject’s initial image, I0, at time 0 is composed of centered black and white 

semi-circles with a 21 pixel radius surrounded by a centered grey circle with a 42 pixel 

radius. Brain atrophy over 3 time steps is modeled by decreasing the volume of the outer 

grey circle by 5% of the initial time point at each time increment, while simultaneously 

increasing the volume of the inner semi-circles by 5%. A second image, T0, which can 

represent either a template image, atlas image, or second subject, is composed of the same 

black and white semi-circles found in I0, while the outer grey circle has been deformed into 

an ellipse by stretching the top and bottom edges an amount equal to 10% of the diameter of 

the grey circle in I0 and then rotating the ellipse by 45°.

The initial velocities v0,w01,w02,w03 of the deformations are found with 100 iterations of 

Flash C++’s image matching using a truncation dimension of 16 and the parameters α = 3.0, 

s = 3.0, σ = 0.03, γ = 0.2. The results of transporting these velocities between I0 and each 

time point In, n ∈ {1, 2, 3} can be seen in Figure 1.

Numerical Stability—We expect to see that the stability of parallel translation improves 

as the number of time steps of numerical integration increase for a particular integration 

scheme, or improves for higher order numerical schemes. Additionally, we want to 

characterize the stability of translation as the deformations grow larger. Therefore, we 

compare the percent change relative to the value at t = 0 of the norms, 〈Lv, v〉 = ||v||2, 

〈Lw,w〉 = ||w||2, and the relative percent change of the inner product, 〈Lv,w〉, all of which 

should be 0 since these inner products remain constant throughout parallel translation. We 

look at how the stability changes as we do either 10, 20 or 100 time steps of both an Euler 

first-order numerical integration scheme and a Runge-Kutta 4 (RK4) fourth-order integration 

scheme. We then do this same comparison for the 5%, 10%, and 15% volume change to see 

how the implementation behaves as deformations grow larger. As you can see in Figure 2, 

the relative change approaches 0 as expected as the number of integration steps increases 

and as the numerical scheme changes from Euler to RK4 where it becomes effectively 0 for 

100 steps of RK4. While it is more expensive to compute this many steps of RK4, it 

provides excellent preservation of the relationship between v and w throughout the parallel 

transport. From these results, we see that 20 iterations of RK4 gives reasonable performance 

without being too computationally intensive. Therefore, we chose to do 20 iterations of RK4 
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for the real data experiments below. Note also that the percent relative change for the angle 

between v and w, 〈Lv,w〉, increases somewhat as the amount of deformation increases from 

5% simulated atrophy in the top row to 10% atrophy in the center row to the 15% simulated 

atrophy in the bottom row. It is expected that the larger deformation leads to somewhat 

larger errors.

4.2 Real Data

We looked at performance of our parallel translation in the context of 3D brain MRIs from 

the OASIS database in order to see how well it captures known atrophy associated with the 

progression of Alzheimer’s disease. We did pairwise comparison of every combination of 11 

healthy subjects and 10 subjects with Alzheimers. We start with images of size 128 x 128 x 

128 that have had the skulls stripped out, intensities normalized, and are then rigidly co-

registered. For each pair, the subject with Alzheimer’s is I0, and I1 is the same subject’s scan 

at a later time, between 2 and 5 years later. the healthy subject’s initial scan is T0. I0 is 

deformably registered to each of I1 and T0 using 200 iterations of image matching from 

Flash C++ with truncated dimension of 16 and parameters α = 3.0, s = 3.0, σ = 0.03, γ = 

1.0. The results for a typical pair are shown in Figure 3.

One of the benefits of this parallel transport is that it is significantly faster than the image 

matching registrations used to produce the diffeomorphisms to be transported. For our 

experiments with real data, the image registration of one pair of 3D images took on the order 

of 800 seconds while the parallel transport of 3D vector fields from one subject to another 

took on the order of 8 seconds. Since parallel transport is consistently 2 orders of magnitude 

faster than the image matching, it becomes an essentially free operation for an image 

analysis pipeline.

Numerical Stability—In order to evaluate the numerical stability, we look at the 

maximum percent change of the inner products 〈Lv, v〉, 〈Lv,w〉, 〈Lw,w〉 as w is transported 

along v. A plot of the maximum percent change across all 106 pairs of subjects can be found 

in Figure 4. The largest maximum relative change across all subjects in 〈Lv,w〉 is 8.6%. The 

associated 〈Lv, v〉 is 0.0009% and the 〈Lw,w〉 is 0.0000% for this same pair of subjects. In 

order to understand why this pair had such a large value compared to other pairs, we ran the 

same pair for 100 steps of RK4. That experiment resulted in much smaller percent change of 

〈Lv,w〉 = 1.51%, 〈Lv, v〉 = 0.00086%, 〈Lw,w〉 = 0.0000%.

5 Conclusion

We presented a method to perform parallel translation in the space of diffeomorphisms, 

allowing us to work with the parallel translation equations directly instead of approximating 

them. Further, we were able to use FLASH to speed up computations further by performing 

them in a smaller Fourier-approximated space. We demonstrated that our method is 

numerically stable and that preservation of the inner products throughout parallel translation 

can be improved in a predictable manner by increasing the number of integration steps 

and/or using the RK4 scheme with a modest associated computational cost.
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We look forward to applying this method to studying trajectories of anatomical shape 

change in a variety of medical image analysis contexts. Also, this method is one example of 

how formulating problems directly in the space of diffeomorphisms and working with that 

Lie algebra combined with efficiencies gained from FLASH techniques allows us to perform 

computations efficiently and stably. We expect that this same approach could work well for 

other analysis such as working with Sasaki metrics.
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Fig. 1. 
Results of parallel translating w0n for each I0 ··· I3 to the template space T0 to produce the 

transformed images T1, T2, T3.
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Fig. 2. 
Percent relative change of the inner product over the integration time from 0 to 1. Where 

relative percent change of x = 〈·, ·〉 is computed by 100*(xt−x0)/x0 for each time step t. The 

rows correspond to results for 5%, 10% and 15% simulated atrophy respectively.
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Fig. 3. 
Axial and coronal views of the results of parallel translating w0 along v0 to the template 

space T0 to produce the transformed image π(w0). The top row in each group consists of the 

original images from a subject with Alzheimer’s, I0 and I1 as well as the difference image I1 

−I0. The bottom row in each group consists of the original template image from a control 

subject T0, the parallel translated image π(w0), and the difference image π(w0) − T0.
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Fig. 4. 
Maximum amount of change in inner products for each subject. The left plot shows the 

maximum relative change of each subject x = 〈·, ·〉 is computed by max0≤t≤1 ((xt − x0)/x0). 

The right plot shows the maximum absolute change of each subject, computed as max0≤t≤1 

(xt − x0).
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