Skip to main content

Multi-modal Image Classification Using Low-Dimensional Texture Features for Genomic Brain Tumor Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10551))

Abstract

In this paper, we present a multi-modal medical image classification framework classifying brain tumor glioblastomas in genetic classes based on DNA methylation status. The framework makes use of computationally efficient 3D implementations of short local image descriptors, such as LBP, BRIEF and HOG, which are processed by a Bag-of-Patterns model to represent image regions, as well as deep-learned features acquired by denoising auto-encoders and hand-crafted shape features calculated on segmentation masks. The framework is validated against a cohort of 116 brain tumor patients from the TCIA database and is shown to obtain high accuracies even though the same image-based classification task is hardly possible for medical experts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/s0216660/brain_tumor_segmentation_em.

  2. 2.

    Intel® Xeon® Processor E3-1225 v3.

  3. 3.

    GeForce GTX Titan X (VRAM 12 GB).

References

  1. Wiestler, B., Capper, D., Sill, M., et al.: Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol. 128, 561–571 (2014)

    Article  Google Scholar 

  2. Paul, A., Dey, A., Mukherjee, D.P., Sivaswamy, J., Tourani, V.: Regenerative random forest with automatic feature selection to detect mitosis in histopathological breast cancer images. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 94–102. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_12

    Chapter  Google Scholar 

  3. Otálora, S., et al.: Combining unsupervised feature learning and riesz wavelets for histopathology image representation: application to identifying anaplastic medulloblastoma. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 581–588. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_71

    Chapter  Google Scholar 

  4. Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_80

    Chapter  Google Scholar 

  5. Levner, I., Drabycz, S., Roldan, G., Robles, P., Cairncross, J.G., Mitchell, R.: Predicting MGMT methylation status of glioblastomas from MRI texture. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 522–530. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04271-3_64

    Chapter  Google Scholar 

  6. Lian, C., Ruan, S., Denœux, T., Li, H., Vera, P.: Dempster-shafer theory based feature selection with sparse constraint for outcome prediction in cancer therapy. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 695–702. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_83

    Chapter  Google Scholar 

  7. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 20(2), 91–110 (2004)

    Article  Google Scholar 

  8. Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32

    Chapter  Google Scholar 

  9. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation-invariant texture classification with local binary patterns. IEEE Trans. Pattern. Anal. Mach. Intell. 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  10. Calonder, M., Lepetit, V., Ozuysal, M., et al.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)

    Article  Google Scholar 

  11. Chen, X., Xu, Y., Yan, S., Chua, T.-S., Wong, D.W.K., Wong, T.Y., Liu, J.: Discriminative feature selection for multiple ocular diseases classification by sparse induced graph regularized group lasso. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 11–19. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_2

    Chapter  Google Scholar 

  12. Banerjee, J., Moelker, A., Niessen, W.J., Walsum, T.: 3D LBP-based rotationally invariant region description. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 26–37. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37410-4_3

    Chapter  Google Scholar 

  13. Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_69

    Chapter  Google Scholar 

  14. Kläser, A., Marszalek, M., Schmid, C.: A Spatio-Temporal Descriptor based on 3d-Gradients. In: BMVC (2008)

    Google Scholar 

  15. Csurka, G., Bray, C., Dance, C., et al.: Visual Categorization with Bags of Keypoints. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

    Google Scholar 

  16. Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Menze, B.H., et al.: A generative probabilistic model and discriminative extensions for brain lesion segmentation - with application to tumor and stroke. IEEE Trans. Med. Imaging 35(4), 933–946 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Alberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alberts, E. et al. (2017). Multi-modal Image Classification Using Low-Dimensional Texture Features for Genomic Brain Tumor Recognition. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67675-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67674-6

  • Online ISBN: 978-3-319-67675-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics