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Abstract. We present an inference algorithm and connected Monte
Carlo based estimation procedures for metric estimation from landmark
configurations distributed according to the transition distribution of a
Riemannian Brownian motion arising from the Large Deformation Dif-
feomorphic Metric Mapping (LDDMM) metric. The distribution pos-
sesses properties similar to the regular Euclidean normal distribution
but its transition density is governed by a high-dimensional PDE with
no closed-form solution in the nonlinear case. We show how the density
can be numerically approximated by Monte Carlo sampling of condi-
tioned Brownian bridges, and we use this to estimate parameters of the
LDDMM kernel and thus the metric structure by maximum likelihood.
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1 Introduction

Finite dimensional landmark configurations are essential in shape analysis and
computational anatomy, both for marking and following anatomically important
areas in e.g. changing brain anatomies and discretely represented curve outlines,
and in being among the simplest non-linear shape spaces. This simplicity, in
particular the finite dimensionality, makes landmarks useful for theoretical in-
vestigations and for deriving algorithms that can subsequently be generalized to
infinite dimensional shape spaces.

While probability distributions in Euclidean space can often be specified
conveniently from their density function, e.g. the normal distribution with the
density p,, »(x) e_%(m_“)Tzfl(’”—“), the non-linear nature of shape spaces of-
ten rules out closed form functions. Indeed, a density defined in coordinates will
be dependent on the chosen coordinate chart and thus not geometrically intrin-
sic, and normalization factors can be inherently hard to compute. A different
approach defines probability distributions as transition distributions of stochas-
tic processes. Because stochastic differential equations (SDEs) can be specified
locally from their infinitesimal variations, it is natural to define them in geo-
metric spaces. Belonging to this category, the present paper aligns with a range



Fig.1. A Brownian bridge connecting a configuration of 8 landmarks (blue points)
to corresponding target landmarks (black points). Blue curves shows the stochastic
trajectory of each landmark. The bridge arises from a Riemannian Brownian motion
conditioned on hitting the target at time 7" = 1. The transition density pr can be
evaluated by taking expectation over such bridges.

of recent research activities on nonlinear SDEs in shape analysis and geometric
mechanics [261251T413/4].

We consider here observations distributed according to the transition distri-
bution of a Brownian motion, which is arguably one of the most direct general-
izations of the Gaussian distribution to nonlinear geometries. For the Brownian
motion, each infinitesimal step defining the SDE can be considered normally
distributed with isotropic covariance with respect to the Riemannian metric of
the space. Then, from observations, we aim to infer parameters of this metric.
In the Large Deformation Diffeomorphic Metric Mapping (LDDMM) setting,
this can be framed as inferring parameters of the kernel mapping K between
the dual Lie algebra g* and the Lie algebra g = X(£2) of the diffeomorphism
group Diff(£2) that acts on the domain {2 containing the landmarks. We achieve
this by deriving a scheme for Monte Carlo simulation of Brownian landmark
bridges conditioned on hitting the observed landmark configurations. Based on
the Euclidean diffusion bridge simulation scheme of Delyon and Hu [6], we can
compute expectation over bridges using the correction factor of a guided diffu-
sion process to obtain the transition density of the Brownian motion. From this,
we can take derivatives to obtain an iterative optimization algorithm for the
most likely parameters. The scheme applies to the situation when the landmark
configurations are considered observed at a fixed positive time ¢ = T. The time
interval [0,7] will generally be sufficiently large that many time discretization
points are needed to accurately represent the stochastic process.

We begin in Section [2| with a short survey of LDDMM landmark geometry,
metric estimation, large deformation stochastics, and uses of Brownian motion



in shape analysis. In Section[3] we derive a scheme for simulating Brownian land-
mark bridges. We apply this scheme in Section[d]to derive an inference algorithm
for estimating parameters of the metric. Numerical examples are presented in
Section [5| before the paper ends with concluding remarks.

2 Landmarks Manifolds and Stochastic Landmark
Dynamics

We start with a short survey of landmark geometry with the LDDMM framework
as derived in papers including [24[7ITT5]. The framework applies to general
shape spaces though we focus on configurations q = (¢1, . ..,qn) of N landmarks
¢; € 2 C R?. We denote the resulting manifold @Q. Two sets of shapes q°, q! are
in LDDMM matched by minimizing the energy functional
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The parameter of E is a time-dependent vector field u; € X({2) that via a
reconstruction equation

8tgt = Ut © Gt (2)
generates a corresponding time-dependent flow of diffeomorphisms g; € Diff(£2).
The endpoint diffeomorphism g; move the landmarks through the action g.q =
(9(q1),---,9(gn)) of Diff(£2) on Q. The right-most term of measures the
dissimilarity between g;.q° and q' weighted by a factor A > 0. In the landmark
case, the squared Euclidean distance when considering the landmarks elements
of RN is often used here.

The Lagrangian [ on u is often in the form I(u) = (u, Lu) with the L2-pairing
and L being a differential operator. Because X(2) can formally be considered
the Lie algebra g of Diff(£2), I puts the dual Lie algebra g* into correspondence
with g by the mapping %% g — g, u+— Lu. The inverse of the mapping
arise from the Green’s function of L, written as the kernel K. Such [ defines
a right-invariant inner product on the tangent bundle T Diff (£2) that descends
to a Riemannian metric on Q. Because @ can be considered a subset of RV¢
using the representation above, the metric structure can be written directly as
a cometric

&g =¢"K(q,an (3)

using the kernel K evaluated on q for two covectors §,n € T§Q. The kernel is
often specified directly in the form K (qi,qz2) = Idgk(||a1 — qz2]|?) for appropri-
ate kernels k. One choice of k is the Gaussian kernel k(x) = ae~ 2% ¥ with
matrix X = oo’ specifying the spatial correlation structure, and o > 0 a scaling
of the general kernel amplitude.

Estimating parameters of K, with K as above a and the entries of X or o,
has to our knowledge previously only been treated for landmarks in the small-
deformation setting [I]. While a linear vector space probability distribution is



mapped to the manifold with small deformations, this paper concerns the sit-
uation when the probability distribution is constructed directly from the Rie-
mannian metric on the nonlinear space ). The approach has similarities with
the estimation procedures derived in [20] where a metric on a finite dimensional
Lie group is estimated to optimize likelihood of data on a homogeneous space
arising as the quotient of the group by a closed subgroup. Though the landmark
space can be represented as Diff ({2)/H with H the landmark isotropy subgroup
[19], the approach of [20] can not directly be applied because of the infinite
dimensionality of Diff(£2).

2.1 Brownian Motion

A diffusion processes q; on a Riemannian manifold @ is said to be a Brownian
motion if its generator is %Ag with A, being the Laplace-Beltrami operator
of the metric g. Such processes can be constructed in several ways, see e.g.
[10]. By isometrically embedding @ in a Euclidean space R?, the process can
be constructed as a process in RP that will stay on @ a.s. The process can

equivalently be characterized in coordinates as being solution to the It6 integral

dgi = gM' T (q) ' dt + /9" (qr) dW; (4)

where /g* is a square root of the cometric tensor [g*]¥ = ¢/ and the drift term
arise from contraction of the Christoffel symbols I,* with the cometric. The
noise term is infinitesimal increments dW of an R4™(?)_yalued Brownian motion
W;. Equivalently, the Brownian motion can be constructed as a hypoelliptic
diffusion processes in the orthonormal frame bundle OQ where a set of globally
defined horizontal vector fields Hy, ..., Hyim(q) € TOQ gives the Stratonovich
integral equation

duy = H;(ug) o W} . (5)

Note the sum over the dim(Q) horizontal fields H;. The process q; = m(uy)
where 7 : OQ — @ is the bundle map is then a Brownian motion. This is known
as the Eells-Elworthy-Malliavin construction of Brownian motion. The fields
H,; evaluated at u € OQ model infinitesimal parallel transport of the vectors
comprising the frame u in the direction of the ith frame vector, see e.g. [10].
While Brownian motion is per definition isotropic with equal variation in
all directions, data with nontrivial covariance can be modeled by defining the
SDE (5) in the larger frame bundle F@Q [I721] using nonorthonormal frames
to model the square root of the local covariance structure. In this setup, the
inference problem consists of finding the starting point of the diffusion and the
square root covariance matrix. Estimators are defined via a Frechét mean like
minimization in F'QQ with square F(@Q distances used as proxy for the negative
log-transition density. In this paper, we remove this proxy by approximating the
actual transition density, but only in the isotropic Brownian motion case.



2.2 Large Deformation Stochastics

Several papers have recently derived models for Brownian motion [I3] and stochas-
tic dynamics in shape analysis and for landmark manifolds. [25126] considered
stochastic shape evolution by adding finite and infinite dimensional noise in the
momentum equation of the dynamics. In [14], noise is added to the momentum
equation to make the landmark dynamics correspond to a type of heat bath
appearing in statistical physics. In [B4] a stochastic model for shape evolution
is derived that descends to the landmark space in the same fashion as the right-
invariant LDDMM metric descends to ). The fundamental structure is here the
momentum map that is preserved by the introduction of right-invariant noise.
The approach is linked to parametric SDEs in fluid dynamics [9] and stochastic
coadjoint motion [2].

3 Brownian Bridge Simulation

Brownian motion can be numerically simulated on @ using the coordinate Itd
form . With a standard Euler discretization, the scheme becomes

Atpyr = At + K(qu, @) T(@) At + VK (qu,,, ar, ) ; AW, (6)
with time discretization ¢y, ..., ¢, tx—tx—1 = At and discrete noise Wy, ,..., W;, €

RNd AWy, = AWy, — AW, . Alternatively, a Heun scheme for discrete inte-
gration of the Stratonovich equation results in

vtk+1 = Hi(utk)A tlk
Utgoqr + Hi(utk + ’Utk+1)AWtik (7)
5 .

Utppy = Uty

Because the horizontal fields represent infinitesimal parallel transport, they can
be expressed using the Christoffel symbols of g. The Christoffel symbols for the
landmark metric are derived in [I5] from which they can be directly implemented
or implicitly retrieved from an automatic symbolic differentiation as done in the
experiments in Section

3.1 Bridge Sampling

The transition density pr(v) of a Brownian motion q; evaluated at v € Q at
time T > 0 can be informally obtained by taking an expectation to get the
“mass” of those of the sample paths hitting v at time 7. We write q;|v for the
process q; conditioned on hitting v a.s. at ¢ = T. Computing the expectation
analytically is in nonlinear situations generally intractable. Instead, we wish to
employ a Monte Carlo approach and thus derive a method for simulating from
q:|v. For this, we employ the bridge sampling scheme of Delyon and Hu [6]. We
first describe the framework for a general diffusion process in Euclidean space
before using it directly on the landmark manifold Q.



Let
dCCt = b(t, It)dt + O'(t, It>th (8)

be an R¥ valued Ito diffusion with invertible diffusion field o. In order to sam-
ple from the conditioned process x:|v, v € R¥, a modified processes is in [6]
constructed by adding an extra drift term to the process giving the new process

dy: = bit, ye)dt — 2 :dt +o(t,y)dW; . 9)
As t — T, the attraction term —(y; — v)/(T — t)dt becomes increasingly strong
forcing the processes to hit y at ¢ = T a.s. It can be shown that the process
y; exists when b, o and o' are C*? with bounded derivatives. The process is
then absolutely continuous with respect to the conditioned process z¢|v. The
Radon-Nikodym derivative between the laws P,,|, and P, is

dPﬂc‘”( ): QOT(y)
dp, Eyler]

with E,[-] denoting expectation with respect to P,, and the correction factor
o7 (y) defined as the t — T limit of

o0(1) = exp (_ /Ot g5 Als,ys)b(s,9s)

T —s
1t/wgzrdA<aa@»gs+—§:Ljd<A”(swh>4zg£>> (10)
0
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Here §j; = y; —v, A = (00) 71, and quadratic variation is denoted by (-, -). Then
Eolf(@)ler = o] = Eu[f(2)] = Ey[f (y)er (9)]/ Eyler(y)] and

Th/2 Ha*l(o,m%(wo—wn"’ -
E[f(y)ei] = e(T 7 E[f(z)e

ot t,ep) (2 —v))|2
2(T—1) ]

for t < T. The fact that the diffusion field ¢ must be invertible for the scheme
to work as outlined here can be seen explicitly from the use of the inverse of o
and A in these equations.

We can use the guided process @D to take conditional expectation for general
measurable functions on the Wiener space of paths W (RF,[0,T]) by sampling
from y;. Taking the particular choice of the constant function, the expression

p“”:vggﬂu““mﬁw“Q&wﬂm ()

for the transition density of x; arise as shown in [I6]. Note that both the leading
factors and the correction factor @7 are dependent on the diffusion field o, the
starting point zy of the diffusion, and the drift b. Again, we can approximate
the expectation in by sampling from y;.



3.2 Landmark Bridge Simulation

Because the landmark manifold has a global chart on RY? from the standard
representation of each landmark position in R%, we can conveniently apply the
bridge construction of [6]. Writing the Ité6 coordinate form of the Brownian
motion q¢ in the form (§), we have b(t,q) = K(q,q)"I'(q),, and o(t,q) =
v K(q,q) giving the guided SDE
kl Yt — Vv [T lo o)
dYt :K(thytk) F(yt)kldt_ T _¢ dt + K(ytk7ytk)th (12)

The attraction term —(y; — v)/(T — t)dt is the difference between the current
landmark configuration y; and the target configuration v. The transition density
becomes

1 _ litao=w T K(ag,a0) ~*(ap=w)II?)
= e 2T
VIK (v, v)[(2rT)N
where we use the subscript 6 to emphasize the dependence on the parameters qq

and the kernel K. As above, the expectation Ey,[¢g r(y)] can be approximated
by drawing samples from yg and evaluating @g 7(y).

pr.o(v) Ey,lpor(y)] (13)

Remark 1. A similar scheme is used for the bridge simulation of the stochastic
coadjoint processes of [3/4]. In these cases, the flow is hypoelliptic in the phase
space (q,p) and observations are partial in that only the landmark positions
q are observed. The momenta p are unobserved. In addition, the fact that the
landmarks can carry a large initial momentum necessitates a more general form
of the guidance term —(y; — v)/(T — t)dt that takes into account the expected
value of Ey [yr|(q¢, p¢)] of the process at time T given the current time ¢ position
and momentum of the process.

4 Inference Algorithm

Given a set of i.i.d. observations q',...,q" of landmark configurations, we as-
sume the configurations q* are distributed according to the time ¢ = T transition
distribution qr of a Brownian motion on @) started at qg. We now intend to infer
parameters 6 of the model. With the metric structure on @ given by and
kernel of the form K (q1,qz2) = Idgk(||q1 — az]|?), k(z) = ae~ 2% T2 parameters
are the starting position qg, a, and X = oo”, i.e. 0 = (qo, a, 7).

The likelihood of the model given the data with respect to the Lebesgue
measure on RV is

N
Lo(q',....q") = HPT,O(qi)- (14)

Using our ability to approximate by bridge sampling, we aim to find a
maximum-likelihood estimate (MLE) 6 € argmingLy(q',...,q"). We do this by
a gradient based optimization on 6, see Algorithm [I| Note that the likelihood
and thus the MLE of 6 are dependent on the chosen background measure, in
this case coming from the canonical chart on RV¢,



Algorithm 1: Metric estimation: Inference of parameters 6 from samples.

for | = 1 until convergence do

fori=1 to N do
sample J paths from guided process yo, hitting q
compute correction factors apg’lj; T

end
1 N
Lo(a's....q") « _ ,
HN 1 - ll(ag—a®)T K (ap.a0) " (ap—ah)I?) 15 i
=1 \/IK(a’,a")|(2=T)Nd J g=1YeT

1 N

0141 =01+ ¢V, Lo, (q,...,q")

end

Remark 2. The inference Algorithm [I] optimizes the likelihood Ly directly by
stochastic gradient descent. A different but related approach is an Expectation-
Maximization approach where the landmark trajectories between ¢ = 0 and the
observation time ¢ = T are considered missing data. The E-step of the EM
algorithm would then involve the expectation Eyq:[logp(x)] of the landmark
bridges conditioned on the data with p(x) formally denoting a likelihood of an
unconditioned sample path x. This approach is used in e.g. [4]. While natural to
formulate, the approach involves the likelihood p(x) of a stochastic path which is
only defined for finite time discretizations. In addition, the expected correction
factor Ey[or(y)] that arise when using the guided process y in the estimation
appears as a normalization factor in the EM @Q-function. This can potentially
make the scheme sensitive to the stochasticity in the Monte Carlo sampling
of the expected correction Ey[or(y)]. While the differences between these ap-
proaches needs further investigation, we hypothesize that direct optimization of
the likelihood is superior in the present context.

Remark 3. Instead of taking expectations over qr, we can identify the most
probable path of the conditioned process q;|v. This results in the Onsager-
Machlup functional [8]. In [I8], a different definition is given that, in the isotropic
Brownian motion situation, makes the set of Riemannian geodesics from qq to
v equal to the set of most probable paths of the conditioned process q:|v. The
sample Frechét mean

N
: 1
alrgmlnqoﬁz:dg((llo,(li)2 (15)
i=1
is in that case formally also a minimizer of the negative log-probability of the
most probable path to the data. Given that we are now able to approximate the
density function of the Brownian motion, the MLE of the likelihood with
respect to qp is equivalent to

N
2
argming, — = > 10gpr.q, (i) - (16)
=1



Fig. 2. (left) Samples from the transition distribution of a Brownian motion perturb-
ing an ellipse configuration with 10 landmarks. (center) Subset of the samples shown
together with trajectories of the stochastic landmark Brownian motion started at con-
figuration qo (black points). (right) A guided bridge from qp (black points) to a sample
(blue points).

Fig. 3. (left) Result of the inference algorithm applied to the synthetic ellipse samples.
The initial configuration qo (black points) is showed along with the per-landmark
sample covariance from the samples (black ellipses). The estimated initial configuration
do (blue points) is shown along with the per-landmark sample covariance from a new set
of samples obtained with the inferred parameters (blue ellipses). (center) Evolution of
likelihood (green) and « (blue) during the optimization. Horizontal axis shows number
of iterations and red line is « ground truth. (right) Evolution of the entries of the kernel
covariance o (blue lines) during the optimization, red lines ground truth.

Compared to , the negative log-probability of the data is here minimized
instead of the squared geodesic distance. The estimator can therefore be
considered a transition density equivalent of the sample Frechét mean.

5 Numerical Experiments

We here present examples of the method on simulated landmark configurations,
and an application of the method and algorithm to landmarks annotated on
cardiac images of left ventricles. We aim for testing the ability of the algorithm
to infer the parameters of the model given samples. We here take the first steps
in this direction and leave a more extensive simulation study to future work.

For the simulated data, we compare the results against the true values used
in the simulation. In addition, we do simple model checking for both experiments
by simulating with the estimated parameters and comparing the per-landmark
sample mean and covariance.

We use code based on the Theano library [23] for the implementation, in par-
ticular the symbolic expression and automatic derivative facilities of Theano. The



Fig. 4. (left) An image of a left cardiac ventricle with annotations. (right) The anno-
tations from 14 cardiac images.

|l

Fig. 5. Results of applying the inference algorithm to the cardiac data. Setup and
subfigures as in Figure [3]

code used for the experiments is available in the software package Theano Geom-
etry http://bitbucket.org/stefansommer/theanogeometry. The implemen-
tation and the use of Theano for differential geometry applications including
landmark manifolds is described in [12].

With 10 landmarks arranged in an ellipse configuration qgp, we sample 64
samples from the transition distribution at time 7' = 1 of a Brownian motion
started at qo, see Figure [2| Parameters for the kernel are o = diag(o1, 02) with
01,09 set to the average inter-point distance in qg, and the amplitude parameter
a = 0.01.

We run Algorithm [1] with initial conditions for qg the pointwise mean of
the samples. The parameter evolution trough the iterative optimization and the
result of the inference can be seen in Figure[3] The algorithm is able estimate the
initial configuration and the parameters of o and X' with a reasonable precision.
The sample per-landmark covariance as measured on a new set of simulated data
with the estimated parameters is comparable to the per-landmark covariance of
the original dataset.

5.1 Left Cardiac Ventricles

To exemplify the approach on real data, we here use a set of landmarks obtained
from annotations of the left ventricle in 14 cardiac images [22]. Each ventricle is
annotated with sets of landmarks from which we select 17 from each configura-


http://bitbucket.org/stefansommer/theanogeometry

tion for use in this experiment. Figure [4] shows an annotated image along with
the sets of annotations for all images.

Figure [5| shows the results of the inference algorithm with setup equivalent
to Figure [3| While the parameters converges during the iterative optimization,
we here have no ground-truth comparison. A subsequent sampling using the es-
timated parameters allows comparison of the per-landmark sample covariance.
While the new sample covariance in magnitude and to some degree shape cor-
responds to the sample covariance from the original data, the fact that the
Brownian motion is isotropic forces the covariance to be equivalent for all land-
marks as measured by the Riemannian landmark metric. Including anisotropic
covariance in the distribution or the right-invariant stochastics of [3l4] would
allow the per-landmark covariance to vary and result in a closer fit.

6 Conclusion

In the paper, we have derived a method for maximum likelihood estimation
of parameters for the starting point of landmark Brownian motions and for
the Riemannian metric structure specified from the kernel K. Using the guided
process scheme of [6] for sampling conditioned Brownian bridges, the transition
density is approximated by Monte Carlo sampling. With this approximation
of the data likelihood, we use a gradient based iterative scheme to optimize
parameters. We show on synthetic and real data sets the ability of the method
to infer the underlying parameters of the data distribution and hence the metric
structure of the landmark manifold.

A direct extension of the method presented here is to generalize to the
anisotropic normal distributions [I7] defined via Brownian motions in the frame
bundle F'@Q. This would allow differences in the per-landmark covariance and
thus improve results on datasets such as the presented left ventricle annotations.
Due to the hypoellipticity of the anisotropic flows that must be conditioned on
hitting fibers in F'Q) above points ¢ € @, further work is necessary to adapt the
scheme presented here to the anisotropic case.

Acknowledgements We are grateful for the use of the cardiac ventricle dataset
provided by Jens Chr. Nilsson and Bjgrn A. Grgnning, Danish Research Centre
for Magnetic Resonance (DRCMR).
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