Skip to main content

Jointly Using Deep Model Learned Features and Traditional Visual Features in a Stacked SVM for Medical Subfigure Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10559))

Abstract

Classification of diagnose images and illustrations in the literature is a major challenge towards automated literature review and retrieval. Although being widely recognized as the most successful image classification technique, deep learning models, however, may need to be complemented by traditional visual features to solve this problem, in which there are intra-class variation, inter-class similarity and a small training dataset. In this paper, we propose an approach to classifying diagnose images and biomedical publication illustrations. This algorithm jointly uses the image representations learned by three pre-trained deep convolutional neural network models and ten types of traditional visual features in a stacked support vector machine (SVM) classifier. We have evaluated this algorithm on the ImageCLEF 2016 Subfigure Classification dataset and achieved an accuracy of 85.62%, which is higher than the top performance of purely visual approaches in this challenge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liverman, C.T., Fulco, C.E., Kipen, H.M.: Internet access to the national library of medicine’s toxicology and environmental health databases. National Academies Press (US), Washington, D.C (1998). doi:10.17226/6327

    Google Scholar 

  2. Cirujeda, P., Binefa, X.: Medical image classification via 2D color feature based covariance descriptors. In: CLEF (Working Notes) (2015)

    Google Scholar 

  3. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  4. Kitanovski, I., Dimitrovski, I., Loskovska, S.: FCSE at medical tasks of ImageCLEF 2013. In: CLEF (Working Notes) (2013)

    Google Scholar 

  5. Abedini, M., Cao, L., Codella, N., et al.: IBM research at ImageCLEF 2013 medical tasks. In: American Medical Informatics Association (AMIA) ImageCLEF, Medical Image Retrieval Workshop (2013)

    Google Scholar 

  6. Unay, D., Ekin, A.: Intensity versus texture for medical image search and retrieval. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (2008)

    Google Scholar 

  7. Valavanis, L., Stathpoulos, S., Kalamboukis, T.: IPL at CLEF 2016 medical task. In: CLEF (Working Notes) (2016)

    Google Scholar 

  8. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  9. Dandil, E., et al.: Artificial neural network-based classification system for lung nodules on computed tomography scans. In: 2014 6th International Conference of Soft Computing and Pattern Recognition (2014)

    Google Scholar 

  10. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  11. Kumar, A., et al.: Subfigure and multi–label classification using a fine–tuned convolutional neural network. In: CLEF2016 Working Notes, CEUR Workshop Proceedings. CEUR-WS.org, Évora (2016)

    Google Scholar 

  12. Lopez, A.R., et al.: Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED International Conference on Biomedical Engineering, pp. 40–54 (2017)

    Google Scholar 

  13. Koitka, S., Friedrich, C.M.: Traditional feature engineering and deep learning approaches at medical classification task of ImageCLEF 2016. In: CLEF2016 Working Notes, CEUR Workshop Proceedings. CEUR-WS.org, Évora (2016)

    Google Scholar 

  14. Song, Y., et al.: Large margin local estimate with applications to medical image classification. IEEE Trans. Med. Imaging 34(6), 1362–1377 (2015)

    Article  Google Scholar 

  15. Zhang, C., Bengio, S., et al.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations, Toulon France (2017)

    Google Scholar 

  16. Donahue, J., Jia, Y., Vinyals, O., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. Int. Conf. Mach. Learn. 50, 815–830 (2014)

    Google Scholar 

  17. Müller, H., Kalpathy-cramer, J., Demner-Fushman, D., et al.: Creating a classification of image types in the medical literature for visual categorization. In: SPIE Medical Imaging. International Society for Optics and Photonics, pp. 75–84 (2012)

    Google Scholar 

  18. Gilbert, A., Piras, L., Wang, J., et al.: Overview of the ImageCLEF 2016 scalable concept image annotation task. In: Conference and Labs of the Evaluation Forums (2016)

    Google Scholar 

  19. Chen, C.: Computer Vision in Medical Imaging, vol. 2. World Scientific, Singapore (2014)

    Google Scholar 

  20. Cula, O.G., Dana, K.J.: Compact representation of bidirectional texture functions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, I-1041–I-1047 (2001)

    Google Scholar 

  21. Novak, C.L., Shafer, S.A.: Anatomy of a color histogram. In: 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 599–605 (2002)

    Google Scholar 

  22. Guo, D., Song, Z.: A study on texture image classifying based on gray-level co-occurrence matrix. For. Mach. Woodworking Equip. 7, 007 (2005)

    Google Scholar 

  23. Ojala, T., PietikaInen, M., et al.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  24. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1989)

    Article  Google Scholar 

  25. Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)

    Article  Google Scholar 

  26. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: ACM International Conference on Image and Video Retrieval, pp. 401–408 (2007). ACM

    Google Scholar 

  27. Sikora, T.: The MPEG-7 visual standard for content description-an overview. IEEE Trans. Circ. Syst. Video Technol. 11(6), 696–702 (2001)

    Article  MathSciNet  Google Scholar 

  28. Huang, J., Kumar, S.R., Mitra, M., et al.: Image indexing using color correlograms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 762 (1997)

    Google Scholar 

  29. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79547-6_30

    Chapter  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  32. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Sig. Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dunteman, G.H.: Principal Components Analysis. Sage, Thousand Oaks (1989)

    Book  Google Scholar 

  34. van der Maaten, L., Postma, E., van den Herik, J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1), 66–71 (2007)

    Google Scholar 

  35. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  36. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. Adv. Neural. Inf. Process. Syst. 17, 777–784 (2004)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants 61471297 and 61771397, and in part by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University. We appreciate the efforts devoted by the organizers of the ImageCLEF2016 Medical Image Classification Challenge to collect and share the data for comparing algorithms of classifying diagnose images and illustrations in the biomedical literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, H., Zhang, J., Xia, Y. (2017). Jointly Using Deep Model Learned Features and Traditional Visual Features in a Stacked SVM for Medical Subfigure Classification. In: Sun, Y., Lu, H., Zhang, L., Yang, J., Huang, H. (eds) Intelligence Science and Big Data Engineering. IScIDE 2017. Lecture Notes in Computer Science(), vol 10559. Springer, Cham. https://doi.org/10.1007/978-3-319-67777-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67777-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67776-7

  • Online ISBN: 978-3-319-67777-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics