Skip to main content

Subspace Clustering Under Multiplicative Noise Corruption

  • Conference paper
  • First Online:
  • 2222 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10559))

Abstract

Traditional subspace clustering models generally adopt the hypothesis of additive noise, which, however, dose not always hold. When it comes to multiplicative noise corruption, these models usually have poor performance. Therefore, we propose a novel model for robust subspace clustering with multiplicative noise corruption to alleviate this problem, which is the key contribution of this work. The proposed model is evaluated on the Extend Yale B and MNIST datasets and the experimental results show that our method achieves favorable performance against the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Vis. 29(3), 159–179 (1998)

    Article  Google Scholar 

  2. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1832–1845 (2010)

    Article  Google Scholar 

  3. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)

    Article  Google Scholar 

  4. Xiao, S., Tan, M., Xu, D.: Weighted block-sparse low rank representation for face clustering in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 123–138. Springer, Cham (2014). doi:10.1007/978-3-319-10599-4_9

    Google Scholar 

  5. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 2790–2797 (2009)

    Google Scholar 

  6. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  7. Li, C.-G., Vidal, R.: Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 277–286 (2015)

    Google Scholar 

  8. Yin, M., Guo, Y., Gao, J., He, Z., Xie, S.: Kernel sparse subspace clustering on symmetric positive definite manifolds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5157–5164 (2016)

    Google Scholar 

  9. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning, pp. 663–670 (2010)

    Google Scholar 

  10. Favaro, P., Vidal, R., Ravichandran, A.: A closed form solution to robust subspace estimation and clustering. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, pp. 1801–1807 (2011)

    Google Scholar 

  11. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  12. Vidal, R., Favaro, P.: Low rank subspace clustering (LRSC). Pattern Recogn. Lett. 43, 47–61 (2014)

    Article  Google Scholar 

  13. Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_26

    Chapter  Google Scholar 

  14. Lu, C., Feng, J., Lin, Z., Yan, S.: Correlation adaptive subspace segmentation by trace lasso. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1345–1352 (2013)

    Google Scholar 

  15. You, C., Li, C.-G., Robinson, D.P., Vidal, R.: Oracle based active set algorithm for scalable elastic net subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3928–3937 (2016)

    Google Scholar 

  16. Lu, C., Tang, J., Lin, M., Lin, L., Yan, S., Lin, Z.: Correntropy induced L2 graph for robust subspace clustering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1801–1808 (2013)

    Google Scholar 

  17. Zhang, Y., Sun, Z., He, R., Tan, T.: Robust subspace clustering via half-quadratic minimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3096–3103 (2013)

    Google Scholar 

  18. He, R., Zhang, Y., Sun, Z., Yin, Q.: Robust subspace clustering with complex noise. IEEE Trans. Image Process. 24(11), 4001–4013 (2015)

    Article  MathSciNet  Google Scholar 

  19. Li, B., Zhang, Y., Lin, Z., Lu, H.: Subspace clustering by mixture of Gaussian regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2094–2102 (2015)

    Google Scholar 

  20. Huang, Y.-M., Lu, D.-Y., Zeng, T.: Two-step approach for the restoration of images corrupted by multiplicative noise. SIAM J. Sci. Comput. 35(6), 2856–2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, X.-L., Wang, F., Ng, M.K.: A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 7(1), 456–475 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudin, L., Lions, P.-L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–119. Springer, Heidelberg (2003). doi:10.1007/0-387-21810-6_6

    Chapter  Google Scholar 

  24. Wang, F., Zhao, X.-L., Ng, M.K.: Multiplicative noise and blur removal by framelet decomposition and \(l_ {1}\)-based l-curve method. IEEE Trans. Image Process. 25(9), 4222–4232 (2016)

    Article  MathSciNet  Google Scholar 

  25. Shampine, L.F.: Vectorized adaptive quadrature in matlab. J. Comput. Appl. Math. 211(2), 131–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  27. Ng, M.K., Wang, F., Yuan, X.: Inexact alternating direction methods for image recovery. SIAM J. Sci. Comput. 33(4), 1643–1668 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: International Conference on Machine learning, pp. 689–696 (2009)

    Google Scholar 

  29. Nguyen, H., Yang, W., Sheng, B., Sun, C.: Discriminative low-rank dictionary learning for face recognition. Neurocomputing 173, 541–551 (2016)

    Article  Google Scholar 

  30. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  31. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 73(3), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Hastie, T., Simard, P.Y.: Metrics and models for handwritten character recognition. Stat. Sci. 13(1), 54–65 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, B., Wu, W. (2017). Subspace Clustering Under Multiplicative Noise Corruption. In: Sun, Y., Lu, H., Zhang, L., Yang, J., Huang, H. (eds) Intelligence Science and Big Data Engineering. IScIDE 2017. Lecture Notes in Computer Science(), vol 10559. Springer, Cham. https://doi.org/10.1007/978-3-319-67777-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67777-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67776-7

  • Online ISBN: 978-3-319-67777-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics