Skip to main content

Discovering Hidden Knowledge in Carbon Emissions Data: A Multilayer Network Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10558))

Abstract

In this paper, we construct the first human carbon emissions network which connects more than a thousand geographical locations based on their daily carbon emissions. We use this network to enable a data-driven analysis for a myriad of scientific knowledge discovery tasks. Specifically, we demonstrate that our carbon emissions network is strongly correlated with oil prices and socio-economic events like regional wars and financial crises. Further, we propose the first multilayer network approach that couples carbon emissions with climate (temperature) anomalies and identifies climate anomaly outlier locations across 60 years of documented carbon emissions data; these outlier locations, despite having different emission trends, experience similar temperature anomalies. Overall, we demonstrate how using network science as a key data analysis technique can reveal a treasure trove of knowledge hidden beneath the carbon emissions data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this work, we restrict the climate anomalies to temperature anomalies (i.e., deviation of observed temperature data from long-term means).

  2. 2.

    Since we are plotting the \(0.1\%\) longest links (distance-wise), the links between Australia and New Zealand do not appear due to their close proximity.

References

  1. Andres, R., Boden, T., Marland, G.: Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude. CDIAC, Oak Ridge National Laboratory, U.S. Department of Energy, USA (2013)

    Google Scholar 

  2. Berezin, Y., Gozolchiani, A., Guez, O., Havlin, S.: Stability of climate networks with time. Natu. Sci. Rep. 2, 1–8 (2012)

    Google Scholar 

  3. Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM, vol. 4, pp. 19–26 (2004)

    Google Scholar 

  4. Caesar, J., Alexander, L., Vose, R.: Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J. Geophys. Res. 111, 1–10 (2006)

    Article  Google Scholar 

  5. Domenico, M.D., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2014)

    Article  Google Scholar 

  6. Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: The backbone of the climate networks. Europhys. Lett. 87(4), 1–6 (2009)

    Article  Google Scholar 

  7. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science 328(5981), 1029–1031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. EIA: Historical Crude Oil Prices. Energy Information Administration (1968–2008). http://www.eia.gov/finance/markets/crudeoil/spot_prices.cfm

  9. EU: European Commission - Trade (2016). http://ec.europa.eu/trade/policy/countries-and-regions/countries/new-zealand/

  10. Gao, J., Li, D., Havlin, S.: From a single network to a network-of-networks. Natl. Sci. Rev. 1, 346–356 (2014)

    Article  Google Scholar 

  11. Guez, O., et al.: Global climate network evolves with North Atlantic Oscillation phases: coupling to Southern Pacific Ocean. Europhys. Lett. 103, 1–5 (2013)

    Article  Google Scholar 

  12. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  13. Jutla, I.S., Jeub, L.G.S., Mucha, P.J.: A generalized Louvain method for community detection implemented in MATLAB (2011–2014). http://netwiki.amath.unc.edu/GenLouvain

  14. Kivela, M., Arenas, A., et al.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)

    Article  Google Scholar 

  15. Lambiotte, R., Delvenne, J.C., Barahona, M.: Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 (2008)

  16. Ludescher, J., Gozolchiani, A., Bogachev, M.I., Bunde, A., Havlin, S., Schellnhuber, H.J.: Improved El Nino forecasting by cooperativity detection. Proc. Natl. Acad. Sci. (PNAS) 110(29), 11742–11745 (2013)

    Article  Google Scholar 

  17. Mucha, P.J., et al.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nassar, R., Napier-Linton, L., Gurney, K., et al.: Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission datasets. J. Geophys. Res. 118, 917–933 (2013)

    Article  Google Scholar 

  19. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Accelerating computation of distance based centrality measures for spatial networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS, vol. 9956, pp. 376–391. Springer, Cham (2016). doi:10.1007/978-3-319-46307-0_24

    Chapter  Google Scholar 

  20. Pereira, F.S.F., de Amo, S., Gama, J.: On using temporal networks to analyze user preferences dynamics. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS, vol. 9956, pp. 408–423. Springer, Cham (2016). doi:10.1007/978-3-319-46307-0_26

    Chapter  Google Scholar 

  21. Peters, G.P., et al.: Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. 108(21), 8903–8908 (2011)

    Article  Google Scholar 

  22. Peters, G.P., et al.: Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat. Clim. Change 2, 2–4 (2012)

    Article  Google Scholar 

  23. Steinhaeuser, K., et al.: Multivariate and multiscale dependence in the global climate system revealed through complex networks. Clim. Dyn. 39, 889–895 (2012)

    Article  Google Scholar 

  24. The World Bank: GDP Data for Suriname and Sweden. World Development Indicators (1960–1980). http://data.worldbank.org

  25. Tomasetti, C., Li, L., Vogelstein, B.: Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331), 1330–1334 (2017)

    Article  Google Scholar 

  26. Tomasetti, C., Vogelstein, B.: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217), 78–81 (2015)

    Article  Google Scholar 

  27. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  28. Yin, X., Han, J., Philip, S.Y.: Crossclus: user-guided multi-relational clustering. Data Min. Knowl. Disc. 15(3), 321–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Y., et al.: COSNET: connecting heterogeneous social networks with local and global consistency. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1485–1494. ACM (2015)

    Google Scholar 

  30. Zhou, D., Gozolchiani, A., Ashkenazy, Y., Havlin, S.: Teleconnection paths via climate network direct link detection. Phys. Rev. Lett. 115, 1–5 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the US National Science Foundation (NSF) under CyberSEES Grant CCF-1331804. The authors also acknowledge useful discussions and constructive feedback received from Dr. Da-Cheng Juan from Google Research in the early stages of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartikeya Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bhardwaj, K., Miu, H., Marculescu, R. (2017). Discovering Hidden Knowledge in Carbon Emissions Data: A Multilayer Network Approach. In: Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds) Discovery Science. DS 2017. Lecture Notes in Computer Science(), vol 10558. Springer, Cham. https://doi.org/10.1007/978-3-319-67786-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67786-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67785-9

  • Online ISBN: 978-3-319-67786-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics