Skip to main content

Modeling Quantized Coefficients with Generalized Gaussian Distribution with Exponent 1 / m, \(m=2,3,\ldots \)

  • Conference paper
  • First Online:
Man-Machine Interactions 5 (ICMMI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 659))

Included in the following conference series:

Abstract

The different types of signals in the image and signal processing applications can be modeled with generalized Gaussian distribution (GGD). When limiting to the special cases, then the closed form equations can be determined. The special cases with the exponents \(p=2\) (Gaussian distribution), \(p=1\) (Laplacian distribution), \(p=1/2\) and \(p=1/3\) are considered in literature. In the article, more general approach for the exponents 1 / m, \(m=2,3,\ldots \) is analyzed, which are related to the peaky shapes of GGD. The maximum likelihood method for a discrete random variable is derived for this subclass of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapeau-Blondeau, F., Monir, A.: Numerical evaluation of the lambert w function and application to generation of generalized gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50(9), 2160–2165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clarke, R.J.: Transform Coding of Images. Academic Press, New York (1985)

    Google Scholar 

  3. Du, Y.: Ein sphärisch invariantes verbunddichtemodell für bildsignale. Arch. Elektron. Übertragungstechnik AEÜ 45(3), 148–159 (1991)

    Google Scholar 

  4. Kokkinakis, K., Nandi, A.K.: Exponent parameter estimation for generalized gaussian probability density functions with application to speech modeling. Sig. Process. 85(9), 1852–1858 (2005)

    Article  MATH  Google Scholar 

  5. Krupiński, R.: Approximated fast estimator for the shape parameter of generalized Gaussian distribution for a small sample size. Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 405–411 (2015)

    Google Scholar 

  6. Krupiński, R.: Reconstructed quantized coefficients modeled with generalized Gaussian distribution with exponent 1/3. Image Process. Commun. 21(4), 5–12 (2016)

    Google Scholar 

  7. Krupiński, R., Purczyński, J.: First absolute moment and variance estimators used in JPEG reconstruction. IEEE Sig. Process. Lett. 11(8), 674–677 (2004)

    Article  Google Scholar 

  8. Krupiński, R., Purczyński, J.: Approximated fast estimator for the shape parameter of generalized Gaussian distribution. Sig. Process. 86(2), 205–211 (2006)

    Article  MATH  Google Scholar 

  9. Krupiński, R., Purczyński, J.: Modeling the distribution of DCT coefficients for JPEG reconstruction. Sig. Process. Image Commun. 22(5), 439–447 (2007)

    Article  Google Scholar 

  10. Lavu, S., Choi, H., Baraniuk, R.: Estimation-quantization geometry coding using normal meshes. In: DCC 2003, pp. 362–371. IEEE (2003)

    Google Scholar 

  11. Ma, L., Wang, X., Liu, Q., Ngan, K.N.: Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment. Neurocomputing 215, 21–31 (2016)

    Article  Google Scholar 

  12. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)

    MATH  Google Scholar 

  13. Paez, M.D., Glisson, T.H.: Minimum mean-square-error quantization in speech PCM and DPCM systems. IEEE Trans. Commun. COM–20, 225–230 (1972)

    Article  Google Scholar 

  14. Price, J.R., Rabbani, M.: Biased reconstruction for JPEG decoding. IEEE Sig. Process. Lett. 6(12), 297–299 (1999)

    Article  Google Scholar 

  15. Song, C., Li, F., Dang, Y., Gao, H., Yan, Z., Zuo, W.: Structured detail enhancement for cross-modality face synthesis. Neurocomputing 212, 107–120 (2016)

    Article  Google Scholar 

  16. Yu, S., Zhang, A., Li, H.: A review of estimating the shape parameter of generalized Gaussian distribution ournal of Computational. J. Comput. Inf. Syst. 21(8), 9055–9064 (2012)

    Google Scholar 

  17. Wang, C.: Research of image segmentation algorithm based on wavelet transform. In: ICCC 2015, pp. 156–160. IEEE, Chengdu (2015)

    Google Scholar 

  18. Wang, R., Li, R., Sun, H.: Haze removal based on multiple scattering model with superpixel algorithm. Sig. Process. 127, 24–36 (2016)

    Article  Google Scholar 

  19. Zhang, Y., Wu, J., Xie, X., Li, L., Shi, G.: Blind image quality assessment with improved natural scene statistics model. Digit. Sig. Process. 57, 56–65 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Krupiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Krupiński, R. (2018). Modeling Quantized Coefficients with Generalized Gaussian Distribution with Exponent 1 / m, \(m=2,3,\ldots \) . In: Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-67792-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67792-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67791-0

  • Online ISBN: 978-3-319-67792-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics