Skip to main content

Automatic Algorithms for the Construction of Element Partition Trees for Isogeometric Finite Element Method

  • Conference paper
  • First Online:
Man-Machine Interactions 5 (ICMMI 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 659))

Included in the following conference series:

Abstract

The IGA-FEM is a modern method for simulation of different engineering and biomedical problems by using B-spline basis functions. To allow for real time interaction between human and computer while performing numerical simulations, there is a need for extremely fast solvers solving systems of linear equations generated while performing simulations. In this paper, an algorithm for construction of the ordering that controls the execution of the multi-frontal direct solver algorithm is presented. The ordering prescribes the permutation of the computational matrix in order to minimize the computational cost of the direct solver. We show that execution of our algorithm generating the recursive partitions of the h-adaptive grids with B-spline basis functions allows reducing the computational cost of the IGA-FEM simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboueisha, H., Calo, V.M., Jopek, K., Moshkov, M., Paszyńka, A., Paszyński, M., Skotniczny, M.: Element partition trees for \(h\)-refined meshes to optimize direct solver performance. Part I. Dynamic Programming. Int. J. Appl. Math. Comput. Sci. 27(2), 351–365 (2017)

    Article  MATH  Google Scholar 

  2. Amestoy, P., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  3. Amestoy, P., Duff, I., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (1998)

    Article  MATH  Google Scholar 

  4. Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38(4–5), 310–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benson, D., Bazilevs, Y., Hsu, M.C., Hughes, T.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200(13), 1367–1378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calo, V.M., Brasher, N.F., Bazilevs, Y., Hughes, T.J.R.: Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput. Mech. 43(1), 161–177 (2008)

    Article  MATH  Google Scholar 

  9. Chang, K., Hughes, T., Calo, V.: Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall. Comput. Fluids 68, 94–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Unification of CAD and FEA. Wiley, Chichester (2009)

    Book  Google Scholar 

  11. Dedè, L., Borden, M.J., Hughes, T.: Isogeometric analysis for topology optimization with a phase field model. Technical report, The Institute for Computational Engineering and Sciences (2011)

    Google Scholar 

  12. Dedè, L., Hughes, T., Lipton, S., Calo, V.: Structural topology optimization with isogeometric analysis in a phase field approach. In: USNCTAM 2010, State College, PA, USA (2010)

    Google Scholar 

  13. Demkowicz, L.: Computing with \(hp\)-Adaptive Finite Elements, vol. I. One and Two Dimensional Elliptic and Maxwell Problems. Chapman and Hall/CRC, Boca Raton (2006)

    Google Scholar 

  14. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp-Adaptive Finite Elements, Vol. II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  15. Duddu, R., Lavier, L., Hughes, T., Calo, V.: A finite strain Eulerian formulation for compressible and nearly incompressible hyper-elasticity using high-order NURBS elements. Int. J. Numer. Methods Eng. 89(6), 762–785 (2011)

    Article  MATH  Google Scholar 

  16. Garcia, D., Pardo, D., Dalcin, L., Paszyński, M., Collier, N., Calo, V.: The value of continuity: refined isogeometric analysis and fast direct solvers. Comput. Methods Appl. Mech. Eng. 316, 586–605 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gómez, H., Calo, V., Bazilevs, Y., Hughes, T.: Isogeometric analysis of the cahn-hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gomez, H., Hughes, T., Nogueira, X., Calo, V.: Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput. Methods Appl. Mech. Eng. 199(25–28), 1828–1840 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hossain, S., Hossainy, S.A., Bazilevs, Y., Calo, V., Hughes, T.R.: Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput. Mech. 49(2), 213–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsu, M., Akkerman, I., Bazilevs, Y.: High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput. Fluids 49(1), 93–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Janota, B.: Algorithms for construction of elimination tree for multi-frontal solver of isogeometric finite element method. Master’s thesis, AGH University, Poland (2016)

    Google Scholar 

  23. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Demmel, J., Gilbert, J., Grigori, I., Shao, M., Yamazaki, I.: Superlu users’ guide. Technical report, Ernest Orlando Lawrence Berkeley National Laboratory (1999)

    Google Scholar 

  25. Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31(3), 302–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J.: The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11(1), 134–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hénon, P., Ramet, P., Roman, J.: PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems. Parallel Comput. 28(2), 301–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Paszyńska, A.: Volume and neighbors algorithm for finding elimination trees for three dimensional-adaptive grids. Comput. Math. Appl. 68(10), 1467–1478 (2014)

    Article  MathSciNet  Google Scholar 

  29. Paszyńska, A., Paszyński, M., Jopek, K., Woźniak, M., Goik, D., Gurgul, P., AbouEisha, H., Moshkov, M., Calo, H., Lenharth, A., Nguyen, D., Pingali, K.: Quasi-optimal elimination trees for 2D grids with singularities. Sci. Programm. 2015, 1–18 (2015)

    Google Scholar 

  30. Paszyński, M.: Fast Solvers for Mesh-Based Computations. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Paszyńska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Janota, B., Paszyńska, A. (2018). Automatic Algorithms for the Construction of Element Partition Trees for Isogeometric Finite Element Method. In: Gruca, A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds) Man-Machine Interactions 5. ICMMI 2017. Advances in Intelligent Systems and Computing, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-319-67792-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67792-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67791-0

  • Online ISBN: 978-3-319-67792-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics