Skip to main content

Module Detection Based on Significant Shortest Paths for the Characterization of Gene Expression Data

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10477))

  • 894 Accesses

Abstract

The characterization of diseases in terms of perturbed gene modules was recently introduced for the analysis of gene expression data. Some approaches were proposed in literature, but most of them are inductive approaches. This means that they try to infer key gene networks directly from data, ignoring the biological information available. Here a unique method for the detection of perturbed gene modules, based on the combination of data and hypothesis-driven approaches, is described. It relies upon biological metabolic pathways and significant shortest paths evaluated by structural equation modeling (SEM). The procedure was tested on a microarray experiment concerning tuberculosis (TB) disease. The validation of the final disease module was principally done by the Wang similarity semantic index and the Disease Ontology enrichment analysis. Finally, a topological analysis of the module via centrality measures and the identification of the cut vertices allowed to unveil important nodes in the disease module network. The results obtained were promising, as shown by the detection of key genes for the characterization of the studied disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33(suppl 1), D514–D517 (2005). doi:10.1093/nar/gki033

    Google Scholar 

  2. Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972). doi:10.1126/science.177.4047.393

    Article  Google Scholar 

  3. Ahn, A.C., Tewari, M., Poon, C.S., Phillips, R.S.: The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6), e208 (2006). doi:10.1371/journal.pmed0030208

    Article  Google Scholar 

  4. Barabási, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011). doi:10.1038/nrg2918

    Article  Google Scholar 

  5. Girvan, M., Newman, M.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). doi:10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  6. Segal, E., Friedman, N., Kaminski, N., Regev, A., Koller, D.: From signatures to models: understanding cancer using microarrays. Nat. Genet. 37, S38–S45 (2005). doi:10.1038/ng1561

    Article  Google Scholar 

  7. Wang, X., Dalkic, E., Wu, M., Chan, C.: Gene module level analysis: identification to networks and dynamics. Curr. Opin. Biotechnol. 19(5), 482–491 (2008). doi:10.1016/j.copbio.2008.07.011

    Article  Google Scholar 

  8. Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Press (2011). doi:10.1111/insr.12011_25

  9. Pepe, D., Grassi, M.: Investigating perturbed pathway modules from gene expression data via structural equation models. BMC Bioinform. 15(1), 1–15 (2014). doi:10.1186/1471-2105-15-132

    Article  Google Scholar 

  10. Pepe, D., Hwan, D.J.: Estimation of dysregulated pathway regions in MPP+ treated human neuroblastoma SH-EP cells with structural equation model. BioChip J. 9(2), 131–138 (2015). doi:10.1007/s13206-015-9206-3

    Article  Google Scholar 

  11. Pepe, D., Hwan, D.J.: Comparison of perturbed pathways in two different cell models for Parkinson’s Disease with structural equation model. J. Comput. Biol. 23(2), 90–101 (2016). doi:10.1089/cmb.2015.0156

    Google Scholar 

  12. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. 98(9), 5116–5121 (2001). doi:10.1073/pnas.091062498

    Article  MATH  Google Scholar 

  13. Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.S., Kim, C.J., Kusanovic, J.P., Romero, R.: A novel signaling pathway impact analysis. Bioinformatics 25(1), 75–82 (2009). doi:10.1093/bioinformatics/btn577

    Article  Google Scholar 

  14. Schriml, L.M., Arze, C., Nadendla, S., Chang, Y.W.W., Mazaitis, M., Felix, V., Feng, G., Kibbe, W.A.: Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40(D1), D940–D946 (2012). doi:10.1093/nar/gkr972

    Article  Google Scholar 

  15. Wang, J.Z., Du, Z., Payattakool, R., Philip, S.Y., Chen, C.F.: A new method to measure the semantic similarity of GO terms. Bioinformatics 23(10), 1274–1281 (2007). doi:10.1093/bioinformatics/btm087

    Article  Google Scholar 

  16. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 39(suppl 1), D52–D57 (2011). doi:10.1093/nar/gkq1237

    Article  Google Scholar 

  17. Slight, S.R., Khader, S.A.: Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev. 24(2), 105–113 (2013). doi:10.1016/j.cytogfr.2012.10.002

    Article  Google Scholar 

  18. Carow, B., Reuschl, A.K., Gavier-Widén, D., Jenkins, B.J., Ernst, M., Yoshimura, A., Chambers, B.J., Rottenberg, M.E.: Critical and independent role for SOCS3 in either myeloid or T cells in resistance to Mycobacterium tuberculosis. PLoS Pathog. 9(7), e1003442 (2013). doi:10.1371/journal.ppat.1003442

    Article  Google Scholar 

  19. Mahony, R.A., Diskin, C., Stevenson, N.J.: SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell. Molecular Life Sci. 1(1), 1–14 (2016). doi:10.1007/s00018-016-2234-x

    Google Scholar 

  20. Sichletidis, L., Settas, L., Spyratos, D., Chloros, D., Patakas, D.: Tuberculosis in patients receiving anti-TNF agents despite chemoprophylaxis. Int. J. Tuberc. Lung Dis. 10(10), 1127–1132 (2006)

    Google Scholar 

  21. Song, C.H., Lee, J.S., Lee, S.H., Lim, K., Kim, H.J., Park, J.K., Paik, T.H., Jo, E.K.: Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-α, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J. Clin. Immunol. 23(3), 194–201 (2003)

    Article  Google Scholar 

Download references

Funding acknowledgement

This research was funded by the MIMOmics grant of the European Union’s Seventh Framework Programme (FP7-Health-F5-2012) under the grant agreement number 305280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Pepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pepe, D. (2017). Module Detection Based on Significant Shortest Paths for the Characterization of Gene Expression Data. In: Bracciali, A., Caravagna, G., Gilbert, D., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes in Computer Science(), vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-319-67834-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67834-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67833-7

  • Online ISBN: 978-3-319-67834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics