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Abstract. High throughput technologies have increased the need for automated im-

age analysis in a wide variety of microscopy techniques. Geometric active contour

models provide a solution to automated image segmentation by incorporating statistical

information in the detection of object boundaries. Information theoretic measures such

as entropy and Kullback-Leibler divergence involve numerical evaluation of ratio-type

quantities susceptible to numerical instability, however product-type information theo-

retic measures, such as the Cauchy-Schwartz distance performing better when the size

of the feature space shrinks [1]. Using accurate shape derivation techniques [2], a new

geometric active contour model for image segmentation is defined combining Cauchy-

Schwartz distance and Gabor energy texture filters. The performance is demonstrated

on images from the Brodatz dataset and phase-contrast microscopy images of human

embryonic carcinoma cells.

1 Scientific Background

Due to high throughput technology, a great influx of imaging data has become avail-

able in biomedical research producing large datasets that need to be processed in a

reliable and unbiased way. As a result, there is an increased need for computer au-

tomation throughout the imaging framework [3]. Existing work is focused either on

pre-processing the image to remove artifacts and enhance signal-to-noise ratio [4]; or

using local intensity and/or texture information to delineate the cell surface from the

background [5]. The latter cattegory is non technology-specific and coupled with the

ability to estimate parameters from data has the potential to unify different detection

techniques [6].

Image segmentation is the task of partitioning an image into meaningful regions

such as objects and the background. Region-based segmentation takes into account the

statistical properties of the image for example through density estimation techniques.

The aim of unsupervised segmentation is to partition the image into regions with most

distinct statistical properties. Often the target regions are not easily characterized by

Gaussian-distributed pixel intensities making the detection by standard image analy-

sis techniques (thresholding, edge-detection, region-based and connectivity preserving

techniques) extremely challenging. This is the case in phase-contrast microscopy which

is a widely used imaging technology, however images produced have low signal-to-

noise ratio and illumination artifacts (bright halo around boundaries) caused by changes

in object shape [4].

In this study, the Cauchy-Schwartz measure [1] of divergence is used to optimise im-

age segmentation. Product-type measures such as Cauchy-Schwartz distance and Bat-

tacharyya distance [7] have numerical advantages over ratio-type measures including
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Kullback-Leibler [8] and Renyi’s entropy in the approximation of region-specific distri-

butions. By combining information theory with Gabor energy texture descriptors and a

supervised feature selection strategy, an automated segmentation strategy is described

that can recover boundaries in test images and challenging phase-contrast microscopy

examples.

2 Materials and Methods

The partitioning of image Ω0 into two non-overlapping regions: the target region Ω
and the background region Ω0 \ Ω is defined by function f : Ω0 ⊂ R

2 → R
n, f(x) =

[f1(x), f2(x), ..., fn(x)]
T which associates any image location x = (x, y) ∈ R

2 to a

vector of features fi. The dimension of the feature space is determined by the nature

of features,e.g. n=1 for grayscale intensity, n=3 for color images or large n in the case

of texture. Features observed over the target and background regions represent random

variables independently sampled from a target distribution, pt(f(x)) =
1

||Ω||
∫

Ω
K(f(x)−

f(x̂))dx̂ and a background distribution, pb(f(x)) =
1

||Ω0\Ω||
∫

Ω0\Ω K(f(x)− f(x̂))dx̂ where

x̂ denote uniformly distributed sampling locations from where the feature observations

f(x̂) are collected and the density estimation kernel is a Gaussian:

K(f(x)) =
1

(2π)n/2det(Σ)1/2
exp

(

−
1

2
f(x)TΣ−1f(x)

)

,Σ = σ2I . (1)

In the following, the use of the Cauchy-Schwartz (CS) information-theoretic measure

is discussed as basis for defining a new image segmentation model. The assumption

is that given a partitioning of the image, region-specific pt and pb can be optimally

estimated by modifying the partitioning in the direction of maximising CS distance:

DCS (pt(f(x)), pb(f(x))) = − log

∫

Rn pt(f(x))pb(f(x))df
√

∫

Rn p
2
b(f(x))df

∫

Rn p
2
t (f(x))df

≥ 0 . (2)

Geometric active contour model based on information theory. The active con-

tour partitioning of the image is represented using a level set function Φ(x) ≥ 0, x ∈
Ω;Φ(x) ≤ 0, x ∈ Ω0 \Ω;Φ(x) = 0, x ∈ ∂Ω. The region-based geometric active contour

model based on CS distance is defined as:

J(Φ) =

∫

Rn

pt(f(x))pb(f(x))
√

∫

Rn p
2
t (f(x))df

∫

Rn p
2
b(f(x))df

df + µ

∫

∂Ω

ds = J1(Φ) + J2(Φ) (3)

where J1(Φ) represents the argument of the logarithm in (2) and J2(Φ) imposes min-

imum length of the contour. The evolution of Φ(f(x), t) from an initial given state

Φ(f(x), 0) = Φ0(f(x)) in the direction of minimising (3) is parametrised by t ≥ 0.

The term J1(Φ) =
∫

Rn k(x,Ω)df is described as a region-based term with region-

dependent descriptor k(x,Ω) = G1(x,Ω)G2(x,Ω)G3(x,Ω)
−1/2G4(x,Ω)

−1/2
in the sense

of shape derivation theory [10], whereby:

G1(x,Ω) = pt(f(x)); G3(x,Ω) =

∫

Rn

p2t (f(x))df; (4)

G2(x,Ω) = pb(f(x)); G4(x,Ω) =

∫

Rn

p2b(f(x))df;

Therefore, the Euler derivative of J1 in the direction of v is:

dJ1r(Ω, v) = −
A(x,Ω)

||Ω||

∫

∂Ω

(

1−
G1(x,Ω)

G3(x,Ω)

)

G2(x,Ω) ∗K(f(x)) (v · n) ds+ (5)

+
A(x,Ω)

||Ω0 \ Ω||

∫

∂Ω

(

1−
G2(x,Ω)

G4(x,Ω)

)

G1(x,Ω) ∗K(f(x)) (v · n) ds
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where A(x,Ω) = G
−1/2
3 (x,Ω)G

−1/2
4 (x,Ω) and the operator ∗ denotes convolution.

The term J2(Φ) is a boundary-based term with boundary-independent descriptor, there-

fore dJ2r(Ω, v) = −
∫

∂Ω
µκ(v · n)ds. The evolution equation for the geometric active

contour becomes:

∂Φ

∂t
=

[A(x,Ω)

||Ω||

(

1−
G1(x,Ω)

G3(x,Ω)

)

(G2(x,Ω) ∗K(f(x)))− (6)

−
A(x,Ω)

||Ω0 \ Ω||

(

1−
G2(x,Ω)

G4(x,Ω)

)

(G1(x,Ω) ∗K(f(x))) + µdiv

(

|∇Φ|

||∇Φ||

)

]

n .

Gabor energy-based texture features. Texture features include spatial information

of pixel intensities. Commonly used in image processing is Gabor filtering which de-

composes the image into sub-bands with a preferred orientation and spatial frequency

by kernel convolution. The use of Gabor energy features sets the basis for a nonlin-

ear multi-scale method of describing texture that resembles the way information is

interpreted in the visual cortex, [9]. A 2D Gabor filter centred in (x0, y0) is x′ =
(x− x0) cos θ + (y − y0) sin θ, y′ = −(x− x0) sin θ + (y − y0) cos θ :

gλ,σ,γ,θ,ϕ(x, y) = e−
x′2+γ2y′2

2σ2 cos
(

2π
x′

λ
+ ϕ

)

(7)

where θ ∈ [0 π) is the rotation angle of the gaussian envelope and λ and ϕ ∈ (−π π]
denote the spatial frequency and phase of the sinusoidal carrier. The Gaussian envelope

is characterised by parameters γ, which specifies ellipticity and σ, a scaling parameter

which controls the size of the Gaussian. The ratio σ/λ controls the number of parallel

on and off stripes that the kernel contains. This ratio is determined by the bandwidth b,
σ
λ
= 1

π

√

ln 2
2

2b+1
2b−1

. The response of a Gabor filter (7) applied to an image is:

rλ,σ,γ,θ,ϕ =

∫

Ω

I(u, v)gλ,σ,γ,θ,ϕ(x− u, y − v)dudv . (8)

Gabor energy represents the combined magnitude of two phase-shifted responses:

eλ,σ,γ,θ(x, y) =
√

r2λ,σ,γ,θ,0(x, y) + r2λ,σ,γ,θ,−π
2

(x, y) . (9)

Single orientation texture features. Gabor energy feature function can be de-

fined by discretising λ = [λmin, λmin + ∆λ, . . . ], γ = [γmin, γmin + ∆γ, . . . ] and

θ = [θ1, θ2, . . . ], θk = k π
N
, k = 0, N − 1. We consider the case of b = 1. Multiple

single features f1n,k = eλn,γn,θk(x, y) are ombined into a set:

f1 : Ω0 ∈ R
n, f1(x, y) = [f11,0(x, y), f11,1(x, y) . . . f1n,N−1(x, y)]

T ; (10)

Combined orientation texture features. For textures without a preferred spatial

orientation, a combined Gabor energy feature representing the superposition of energies

f2n(x, y) =
∑N

k=1 eλn,γn,θk(x, y) for all θ is defined as a feature set:

f2 : Ω0 ∈ R
n, f2(x, y) = [f21(x, y), . . . f2n(x, y)]

T (11)

Feature selection strategy. At iteration time t = 0, consider a complete set of fea-

tures was generated in fpool,t = [fpool,t,1(x, y), fpool,t,2(x, y), . . . ]. The supervised feature

selection strategy involves starting with only one feature in the selected set fsel,0(x, y) =
fpool,t,1(x, y) and a testing set F = [fsel,t]. The first feature, fpool,t,1(x, y), is chosen as the
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Figure 1: Grayscale-intensity based segmentation using CS model: recovered contour in (a) artificial

image and (b) phase-contrast microscopy images of cells; corresponding target and background distri-

butions at final iteration shown in panels (c) and (d) respectively. Parameters µ = 0.01;w = 15 and

µ = 0.2;w = 5 in (a) and (b) respectively.

minimisation of CS0(pt, pb) evaluated according to a three step Optimisation: (i) for

the feature set F, find optimal bandwidth σt;(ii) for the partitioning Φ = Φt and given

F , σt estimate pt, pb ; (iii) using pt, pb update CSu(pt, pb).
Step 1. for F = fsel,t, calculate CSu(pt, pb) with Optimisation; Step 2. increase iter-

ation count t = t+1; Step 3. from all remaining features in fpool,t−1 consider the tempo-

rary selection ftemp,t = [fsel,tfpool,t,k, ∀k] and calculate for each k the value of CSu(pt, pb)
when F = ftemp,t with Optimisation; Step 4. choose fpool,t,k that generates the largest

decrease in the criterion and generate new fsel,t = [fsel,t, fpool,t,k] Step 5. return to Step

1. The feature selection strategy terminates for CSt(pt, pb) < 0.1CS0(pt, pb).

Numerical implementation. The level set function Φ is initialised as a signed dis-

tance function and the pixels in the narrow-band region around the contour are updated

followed by reinitialisation of the distance function to prevent numerical errors.The op-

timal variance in each dimension is computed with Scott’s rule σ2
X = 1

n

∑n
i=1 σ

2
ii; σ

⋆ =

σXm
1

n+4 . The Parzen density estimation kernel is Kσ⋆(z) = 1√
2πσ⋆

exp− zT z

2σ⋆2 .The time

step is limited to ∆t = 0.45(2max(|Fu|)
h

+ 2µ
h
+ 2 µ

h2 )
−1.The main parameters reported

are stiffness µ ∈ [0, 1] and width of the narrow band w.

3 Results

Segmentation of phase-contrast images based on grayscale intensity only par-

tially recovers boundaries.The CS-based geometric active contour was evaluated on

a test image and real microscopy images of cells acquired with a phase-contrast mi-

croscope (Figure1). Boundaries of the test image were recovered despite similar mean

intensity of target and background. However, the microscopy images contain target re-

gions with significant overlap to the background and boundaries are only partly recov-

ered. Further halo artifacts and the inclusion of dark and bright objects raise the biggest

problems resembling thresholding techniques. These examples indicate that microscopy

images cannot be segmented using grayscale intensity alone and further information is

hidden in the texture characteristics of both regions.

Gabor features enable detection of noisy object boundaries in textured images.

To investigate the ability to recover boundaries using Gabor texture features, test images

were generated by fusing samples from the Brodatz 1 dataset (Figure 2). The fused

textures have similar mean intensity and noisy illumination which resemble properties

of microscopy images. A single orientation feature space was generated using b = 1,

1http://www.ux.uis.no/ tranden/brodatz.html
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Figure 2: Brodatz texture segmentation examples in images generated as fusion of two textures: (a,b)

active contours evolving from initialisation (top) towards final iteration (bottom) and corresponding shape

of target and background distributions for the three dominant features from optimal sets showed in (c)

and (d) respectively. Parameters µ = 0.2, w = 15.

λ = [1/15, 1/30, 1/60, 1/120, 1/240], γ = [0.2, 0.4, 0.6, 0.8, 1]; this was reduced

to an optimal feature set using the CS-based feature selection strategy and the active

contour was able to succesfully recover the boundaries despite thetarget and background

distributions retaining overlap. The number of selected features is larger in the example

(Figure 2b) compared to (Figure 2a) and the selected features are similar highlighting

that a sparse feature set improves convergence speed at no cost to the final result.

Cauchy-Schwartz model detects cells in phase-contrast images using Gabor fea-

tures. The performance of the geometric active contour and feature selection strategy

were tested on real microscopy images displaying cells with bright and dark cell interior

(Figure 3). The texture of cells has no preffered orientation, therefore the feature space

was combined from features at 8 different orientations followed by reduction to an op-

timal feature set. The active contour was tested on the dark and bright cell on their own

and finally on both. In all cases boundaries were correctly detected using few features.

As expected, initial CS level exceeds the threshold indicated by the feature selections

trategy but falls under at large iteration numbers (Figure 3). The CS trends indicate

that the boundaries of the dark cell are detected fastest (Figure 3a) while the combined

bright and dark cell segmentation is the slowest (Figure 3c).

4 Conclusions

The challenges of segmentation in phase-contrast microscopy images were addressed

through a strategy combining information-theory and Gabor energy features. A new im-

age segmentation model was defined to optimise Cauchy-Schwartz distance between a

desired (target) region and the background using a geometric active contour. The model

incorporated the use of a product-type measure of divergence and shape derivation tech-

niques known to improve robustness and numerical accuracy. Texture information based

on Gabor energy was found to be essential in recovering boundaries of cells of various

grayscale intensities. The introduction of texture information posed the problem of in-

creased computational complexity which was solved through a feature selection strategy

using the same criterion as the active contour. Performance of texure-based segmenta-

tion was demonstrated using single orientation features in textured images adapted from

the Brodatz dataset and combined orientation features for miscroscopy images.
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Figure 3: Selective segmentation of cells in phase-contrast microscopy image using texture: (a-c) active

contours evolving from initialisation (panel top) towards final interation (panel bottom) applied to a cell

with (a) dark, (b) bright and (c) combined grayscale intensity; optimal feature sets and CS values cor-

responding to (a-c); dashed line indicates optimal values of criterion predicted by the feature selection

strategy. Parameters µ = 0.2;w = 15
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