Skip to main content

Constraining Mechanism Based Simulations to Identify Ensembles of Parametrizations to Characterize Metabolic Features

  • Conference paper
  • First Online:
  • 909 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10477))

Abstract

Constraint-based approaches have been proven useful to determine steady state fluxes in metabolic models, however they are not able to determine metabolite concentrations and they imply the assumption that a biological process is optimized towards a given function. In this work we define a computational strategy exploiting mechanism based simulations as a framework to determine, through a filtering procedure, ensembles of kinetic constants and steady state metabolic concentrations that are in agreement with one or more metabolic phenotypes, avoiding at the same time the need of assuming an optimization mechanism. To test our procedure we exploited a model of yeast metabolism and we filtered trajectories accordingly to a loose definition of the Crabtree phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alted, F., Vilata, I., et al.: PyTables: hierarchical datasets in python (2002). http://www.pytables.org

  2. Aung, H.W., Henry, S.A., Walker, L.P.: Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Ind. Biotechnol. 9(4), 215–228 (2013)

    Article  Google Scholar 

  3. Alberghina, L., Westerhoff, H.V. (eds.): Systems Biology: Definitions and Perspectives. Topics in current genetics, 13th edn. Springer, Heidelberg (2005)

    Google Scholar 

  4. Canelas, A.B., van Gulik, V.M., Heijnen, J.J.: Determination of the cytosolic free NAD/NADH ratio in saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol. Bioeng. 100(4), 734–743 (2008)

    Article  Google Scholar 

  5. Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D., Pescini, D., Molinari, S., Mauri, G., Alberghina, L., et al.: Computational strategies for a system-level understanding of metabolism. Metabolites 4(4), 1034–1087 (2014)

    Article  Google Scholar 

  6. Damiani, C., Pescini, D., Colombo, R., Molinari, S., Alberghina, L., Vanoni, M., Mauri, G.: An ensemble evolutionary constraint-based approach to understand the emergence of metabolic phenotypes. Nat. Comput. 13(3), 321–331 (2014)

    Article  MathSciNet  Google Scholar 

  7. Damiani, C., Colombo, R., Di Filippo, M., Pescini, D., Mauri, G.: Linking alterations in metabolic fluxes with shifts in metabolite levels by means of kinetic modeling. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 138–148. Springer, Cham (2017). doi:10.1007/978-3-319-57711-1_12

    Chapter  Google Scholar 

  8. De Deken, R.H.: The crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44(2), 149–156 (1966)

    Article  Google Scholar 

  9. Di Filippo, M.: Zooming-in on cancer metabolic rewiring with tissue specic constraint-based models. Comput. Biol. Chem. 62, 60–69 (2016)

    Article  Google Scholar 

  10. Feist, A., Palsson, B.: The biomass objective function. Curr. Opin. Microbiol. 13(3), 344–349 (2010)

    Article  Google Scholar 

  11. Gianchandani, E.P., Chavali, A.K., Papin, J.A.: The application of flux balance analysis in systems biology. Wiley Interdisc. Rev. Syst. Biol. Med. 2(3), 372–382 (2010)

    Article  Google Scholar 

  12. Jones, E., Oliphant, E., Peterson, P., et al.: SciPy: open source scientific tools for python (2001). http://www.scipy.org/

  13. MacFarland, T.W.W., Yates, J.M.M.: Introduction to Nonparametric Statistics for the Biological Sciences Using R. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  14. Nobile, M.S., Besozzi, D., Cazzaniga, P., et al.: GPU-accelerated simulations of mass-action kinetics models with cupSODA. J Supercomput 69(1), 17–24 (2014)

    Article  Google Scholar 

  15. Nobile, M.S., Cazzaniga, P., Besozzi, D., et al.: CuTtauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems. PLoS ONE 9(3), e91963 (2014)

    Article  Google Scholar 

  16. Olivier, B.G., Rohwer, J.M., Hofmeyr, J.H.S.: Modelling cellular systems with PySCeS. Bioinformatics 21(4), 560–561 (2005)

    Article  Google Scholar 

  17. Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010)

    Article  Google Scholar 

  18. Papini, M., Nookaew, I., Uhlén, M., Nielsen, J.: Scheffersomyces stipitis: a comparative systems biology study with the crabtree positive yeast saccharomyces cerevisiae. Microb. Cell Fact. 11, 136 (2012)

    Article  Google Scholar 

  19. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comp. 1(4), 136–148 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smallbone, K., et al.: A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes. FEBS Lett. 587(17), 2832–2841 (2013)

    Article  Google Scholar 

  21. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M., Reuss, M.: In vivo analysis of metabolic dynamics in saccharomyces cerevisiae: I experimental observations. Biotechnol. Bioeng. 55(2), 305–316 (1997)

    Article  Google Scholar 

  22. Zhao, J., Yu, H., Luo, J., Cao, Z., Li, Y.: Complex networks theory for analyzing metabolic networks. Chin. Sci. Bull. 51(13), 1529–1537 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by SYSBIO Centre of Systems Biology, through the MIUR grant SysBioNet—Italian Roadmap for ESFRI Research Infrastructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Colombo, R., Damiani, C., Mauri, G., Pescini, D. (2017). Constraining Mechanism Based Simulations to Identify Ensembles of Parametrizations to Characterize Metabolic Features. In: Bracciali, A., Caravagna, G., Gilbert, D., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes in Computer Science(), vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-319-67834-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67834-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67833-7

  • Online ISBN: 978-3-319-67834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics