Skip to main content

Extending the Sana Mobile Healthcare Platform with Features Providing ECG Analysis

  • Chapter
  • First Online:
Mobile Big Data

Abstract

The great development of technology recently provides innovations that improve everyday life. The major benefit of it is that medicine is also affected, so better healthcare can be provided. In that context, it can be critical for patients who suffer from chronic heart diseases to have in their availability a system that can monitor and analyse their electrocardiogram (ECG) displaying either normal or abnormal findings. The current chapter describes such a system that uploads, stores, processes and displays an ECG, calculating certain ECG findings necessary for doctors to make a diagnosis. To this end, the SANA mobile healthcare platform, with its OpenMRS open source enterprise electronic medical record system, has been chosen and extended in this work for storing, processing and displaying the ECG data. OpenMRS provides a user-friendly interface and a database for collecting medical big data. Analysis of ECG signals is leveraged by the Physionet toolkit. Physionet contains many ECG databases and the WFDB software for processing ECG signals. According to the scenario we have processed, an ECG is uploaded onto OpenMRS platform using a mobile device or any other Internet-enabled device and is stored in the database that OpenMRS uses. Then, ECG signal is filtered using a finite impulse response (FIR) filter to remove noise and using WFDB functions it is processed so certain intervals are determined. Finally, with the appropriate algorithms specific ECG findings are calculated. When the procedure completes, the results are stored into the database using SQL Queries. Using an HTML Form results and graphs are integrated into the OpenMRS website highlighting abnormal values with red color. Authorized users can have access to this information through any web browser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wikipedia: Information technology. https://en.wikipedia.org/wiki/Information_technology (2017)

  2. Wikipedia: Health information technology. https://en.wikipedia.org/wiki/Health_information_technology (2017)

  3. Wikipedia: Electronic health record. https://en.wikipedia.org/wiki/Electronic_health_record (2017)

  4. Wikipedia: Electrocardiography. https://en.wikipedia.org/wiki/Electrocardiography (2017)

  5. Ranjan, R., Kołodziej, J., Zomaya, A., Alem, L., Wang, L.: Software tools and techniques for big data computing in healthcare clouds. Future Generation Comp. Syst. 43, 38–39 (2015)

    Google Scholar 

  6. Sahay, S.: Big data and public health: challenges and opportunities for low and middle income countries. Commun. Assoc. Inf. Syst. 39(20) (2016)

    Google Scholar 

  7. Ma, Y., Song, J., Lai, C.F., Hu, B., Chen, M.: Smart clothing: connecting human with cloud and big data for sustainable health monitoring. Mobile Netw. Appl. 21(5), 825–845 (2016)

    Google Scholar 

  8. Warwick-Clark, B., Obeysekare, E., Mehta, K., Bram, J.T.: Utilization and monetization of healthcare data in developing countries. Big Data 3(2), 59–66 (2015)

    Article  Google Scholar 

  9. Madhukant, R., Prabhakaran, V.M., Gokul Kruba Shanker, R., Balamurugan, S.: Internet of health: applying IoT and big data to manage healthcare systems. Int. Res. J. Eng. Technol. (IRJET) 3(10) (2016)

    Google Scholar 

  10. Coronato, A., Amato, A.: An IoT-aware architecture for smart healthcare coaching systems. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 1027–1034. IEEE (2017)

    Google Scholar 

  11. Geetha, G., Sundara Velrani, K.: Sensor based healthcare information system. In: Technological Innovations in ICT for Agriculture and Rural Development (TIAR) 2016, pp. 86–92. IEEE (2016)

    Google Scholar 

  12. Laplante, N.L., Laplante, P.A.: A structured approach for describing healthcare applications for the internet of things. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 621–625 (2015)

    Google Scholar 

  13. Laplante, N., Laplante, P.A.: The internet of things in healthcare: Potential applications and challenges. IT Prof. 18(3), 2–4 (2016)

    Article  Google Scholar 

  14. Lee Ventola, C.: Mobile devices and apps for health care professionals: uses and benefits. 39(5) (2014)

    Google Scholar 

  15. Saleh, A., Mansour, M.M., Zarka, N.: Mobile healthcare system (2016)

    Google Scholar 

  16. Khan, M.A., AlGhamdi, M.A., AlMotiri, S.H.: Mobile health (m-health) system in the context of IoT. In: 2016 4th International Conference on Future Internet of Things and Cloud Workshops, pp. 39–42. Aug 2016

    Google Scholar 

  17. Knowledge for Health: mHealthKnowledge. http://www.mhealthknowledge.org/resource-type/applications-platforms (2017)

  18. Nimunkar, A.J., Webster, J.G., Kalogriopoulos, N.A., Baran, J.: Electronic medical record systems for developing countries: review. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1730–1733 (2009)

    Google Scholar 

  19. Sana: http://dev.sanamobile.org/

  20. Sarmenta, L., Rotberg, J., Marcelo, A., Clifford, G., Celi, L.A.: Mobile care (Moca) for remote diagnosis and screening. J. Health Inf. Dev. Countries 3(1), 17–21 (2009)

    Google Scholar 

  21. Vereijken, B., Becker, C., Todd, C., Taraldsen, K., Pijnappels, M., Aminian, K., Mellone, S., Helbostad, J.L.: Mobile health applications to promote active and healthy ageing. Sensors 17(3), 622 (2017)

    Article  Google Scholar 

  22. King, A., Lee, I., MacDonald, A., Fernando, A., Hatcliff, J.: Rationale and architecture principles for medical application platforms. In: ACM/EEE Third International Conference on Cyber-Physical Systems (ICCPS 2012), pp. 3–12. April 2012

    Google Scholar 

  23. Bru, J., Berger, C.A., Millard, P.S.: Open-source point-of-care electronic medical records for use in resource-limited settings: systematic review and questionnaire surveys. BMJ Open. 2(4), e000690 (2012)

    Google Scholar 

  24. Haiqi, A., Zaidan, B.B., Zaidan, A.A., Kiah, M.L.M.: Open source EMR software: profiling, insights and hands-on analysis. Comput. Methods Program. Biomed. 117(2), 360–382 (2014)

    Google Scholar 

  25. Ukil, A., Bandyopadhyay, S., Singh, R., Pal, A., Mandana, K., Puri, C.: iCarMa: inexpensive cardiac arrhythmia management–an IoT healthcare analytics solution. In: Proceedings of the First Workshop on IoT-enabled Healthcare and Wellness Technologies and Systems, pp. 3–8 (2016)

    Google Scholar 

  26. Landínez, S.F., López, D.M., Blobel, B., Villamil, C.A.: A mobile ECG system for the evaluation of cardiovascular risk. In: MIE, pp. 210–214. Sep 2016

    Google Scholar 

  27. Agrafioti, F., Hatzinakos, D., Plataniotis, K.N., Wang, Y.: Analysis of human electrocardiogram for biometric recognition. EURASIP J. Adv. Signal Process. (2007)

    Google Scholar 

  28. Alesanco, A., Martinez, I., Garcia, J., Trigo, J.D.: A review on digital ECG formats and the relationships between them. IEEE Trans. Inf. Technol. Biomed. 16(3), 432–444 (2012)

    Google Scholar 

  29. Arbaugh, J.: HTML form entry JavaScript reference. https://wiki.openmrs.org/display/docs/HTML+Form+Entry+JavaScript+Reference (2014)

  30. Mamlin, B.W., Biondich, P.G., Fraser, H.S., Wolfe, B.A., Jazayeri, D., Allen, C., Miranda, J., Baker, E., Musinguzi, N., Kayiwa, D., Fourie, C., Lesh, N., Kanter, A., Yiannoutsos, C.T., Bailey, C., Seebregts, C.J.: The OpenMRS implementers network. Int. J. Med. Inf. 78(11), 711–720 (2009)

    Google Scholar 

  31. The National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institute of General Medical Sciences (NIGMS): PhysioNet the research resource for complex physiologic signals. https://physionet.org/

  32. Hudson, K.B., Naples, R., Sudhir, A., Mitchell, S.H., Ferguson, J.D., Reiser, R.C., Brady, W.J.: The ECG in Prehospital Emergency Care. Wiley (2012)

    Google Scholar 

  33. Papazaxos, G.: The Electrocardiogram in Clinical Practice. Medical Publications of Litsas (2000)

    Google Scholar 

  34. van Herpen, G., Bots, M.L., Verweij, N., Rijnbeek, P.R.: Normal values of the electrocardiogram for ages 16–90 years. J. Electrocardiol. 47(6), 914–921 (2014)

    Google Scholar 

  35. Wikipedia: QT interval. https://en.wikipedia.org/wiki/QT_interval (2017)

  36. ECGpedia: P wave morphology. http://en.ecgpedia.org/wiki/P_Wave_Morphology (2011)

  37. Bove, D.W., Norris, K.E., Conyers, R.J., Conradi, E., Rowlands, S., Scott, D.T., Romhilt, R.C.: A critical appraisal of the electrocardiographic criteria for the diagnosis of left ventricular hypertrophy. Circulation 40(2), 185–196 (1969)

    Article  Google Scholar 

  38. Keys, A., Simonson, E., Rautaharju, P., Punsar, S., Blackburn, H.: The electrocardiogram in population studies. Circulation 21(6), 1160–1175 (1960)

    Article  Google Scholar 

  39. Zhang, Z.M., Crow, R.S., Prineas, R.J.: The Minnesota Code Manual of Electrocardiographic Findings. Springer Science and Business Media (2010)

    Google Scholar 

  40. Park, R.E., Marchlinski, F.E., Hutchinson, M.D., Garcia, F.C., Dixit, S., Callans, D.J., Cooper, J.M., Bala, R., Lin, D., Riley, M.P., Gerstenfeld, E.P., Betensky, B.P.: The V2 transition ratio: a new electrocardiographic criterion for distinguishing left from right ventricular outflow tract tachycardia origin. J. Am. Coll. Cardiol. 57(22), 2255–2262 (2011)

    Article  Google Scholar 

  41. Feldman, T., Henrikson, C.A., Tereshchenko, L.G., Oehler, A.: QRS-T angle: a review. Ann. Noninvasive Electrocardiol. 19(6), 534–542 (2014)

    Article  Google Scholar 

  42. Kamath, U., Bharadwaj, A.: EE times connecting the global electronics community. [Online]. http://www.eetimes.com/document.asp?doc_id=1278571 (2011)

  43. Pucik, J., Cocherová, E., Ondracek, O.: Filters for ECG digital signal processing. Int. Conf. Trends Biomed. Eng. 7(9) (2005)

    Google Scholar 

  44. Memane, K., Londhe, T., Thanki, H.J., More, P.: Advance IoT-based BSN healthcare system for emergency response of patient with continuous monitoring and motion detection. Int. J. Modern Trends Sci. Technol. 2(12) (2016)

    Google Scholar 

  45. Bhattacharya, P.P., Sangwa, A.: Wireless body sensor networks: a review. Int. J. Hybrid Inf. Technol. 8(9), 105–120 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Panagiotakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsampi, K. et al. (2018). Extending the Sana Mobile Healthcare Platform with Features Providing ECG Analysis. In: Skourletopoulos, G., Mastorakis, G., Mavromoustakis, C., Dobre, C., Pallis, E. (eds) Mobile Big Data. Lecture Notes on Data Engineering and Communications Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-67925-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67925-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67924-2

  • Online ISBN: 978-3-319-67925-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics