
Coordination of Dynamic
Software Components with

JavaBIP

Anastasia Mavridou, Valentin Rutz, Simon Bliudze

May 12, 2021

Abstract: JavaBIP allows the coordination of software components by clearly separating the functional and co-

ordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework

rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static

components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its

component instances. Nevertheless, modern systems, often make use of components that can register and deregister

dynamically during system execution. In this paper, we present an extension of JavaBIP than can handle this type

of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types.

Additionally, we use directed graphs with coloring edges to model dependencies among components that determine

the validity of an online system. We present the software architecture of our implementation; provide and discuss

performance evaluation results.

i

ar
X

iv
:1

70
7.

09
71

6v
2

 [
cs

.S
E

]
 1

5
A

ug
 2

01
7

@TechReport{DynamicJavaBIP,

Author = {Anastasia Mavridou and Valentin Rutz and Simon Bliudze},

Title = {Coordination of {D}ynamic {S}oftware {C}omponents with {J}ava{BIP}},

note = {available at \url{https://arxiv.org/abs/1707.09716}},

Year = {2017},

Eprint = {arXiv:1707.09716}

}

Contents

1 Introduction 2

2 The JavaBIP Framework 3

3 Motivating Case Study 3
3.1 Componentization and Interaction Model . 5

4 Interaction Logic and Macro-notation 7
4.1 Propositional Interaction Logic . 7
4.2 First-order Interaction Logic . 7
4.3 JavaBIP Require/Accept Macro-notation Based on FOIL . 9

4.3.1 The Require Macro . 9
4.3.2 The Accept Macro . 10

5 Defining System Validity 10

6 Implementation 15
6.1 Performance Results . 17

7 Related Work 18

8 Conclusion and Future Work 19

Appendix A Complete glue specification of the modular phone case study 22

1

1 Introduction

We have previously introduced JavaBIP [8, 9] that allows coordinating software components exogenously,
i.e., without requiring access to component source code. JavaBIP relies on the following observations.
Domain specific components have states (e.g., idle, working) that are known to component users with domain
expertise. Furthermore, components always provide APIs that allow programs to invoke operations (e.g.,
suspend or resume) in order to change their state, or to be notified when a component changes its state
spontaneously. Thus, component behavior can be easily represented by Finite State Machines (FSMs).

JavaBIP brings the BIP principles into a more general software engineering context than that of embedded
systems, in which code generation might not be desirable due to continuous code updates. Thus, to use
JavaBIP, instead of generating Java code from the BIP modeling language, developers must provide—for the
relevant components—the corresponding FSMs in the form of annotated Java classes. The FSMs describe
the protocol that must be respected to access a shared resource or use a service provided by a component.
FSM transitions are associated with calls to API functions, which force a component to take an action, or
with event notifications that allow reacting to external events.

For component coordination, JavaBIP provides two primitive mechanisms: 1) multi-party synchroniza-
tions of component transitions and 2) asynchronous event notifications. The latter embodies the reactive
programming paradigm. In particular, JavaBIP extends the Actor model [1], since event notifications can
be used to emulate asynchronous messages, while providing the synchronization of component transitions as
a primitive mechanism gives developers a powerful and flexible tool to manage coordination. The synchro-
nization of component transitions is managed by a runtime called JavaBIPEngine, which, for simplicity, we
call “engine” in the rest of the paper. Notice that in a completely asynchronous system the engine is not
needed.

JavaBIP clearly separates system-wide coordination policies from component behavior. Synchronization
constraints, defining the possible synchronizations among transitions of different components i.e., the set of
possible component interactions, are specified independently from the design of individual components in
dedicated XML files. This separation of functional and coordination aspects greatly reduces the burden of
system complexity. Finally, integration with the BIP framework, through a JavaBIP to BIP code generation
tool, allows the use of existing deadlock-detection and model checking tools [6, 7] ensuring the correctness
of JavaBIP systems.

The previous implementation of JavaBIP [9] was static. To coordinate a system, the full set of components
had be registered before starting the engine. No components could be added on-the-fly and, most importantly,
if a failure occurred in a single component, the engine execution had to stop and the full set of constraints
had to be computed anew. Notice that none of the current BIP implementations [4, 5, 12] allows to add
or remove components on-the-fly, including DyBIP presented in [13] that allows dynamically changing the
set of interactions among a fixed set of components at runtime. This might be problematic, since modern
systems, e.g., large banking systems or modular smartphones, make use of components that can register and
deregister during system execution.

To allow dynamicity in JavaBIP, we use first-order interaction logic to describe synchronization con-
straints on component types. As a result, a developer can write synchronization constraints without know-
ing the exact number of components in the system. Thus, component instances of known types, i.e., types
for which synchronization constraints exist, can register at runtime without any additional input from the
developer. To optimize JavaBIP performance, we have introduced a notion of system validity: a system is
valid if and only if its set of possible interactions is not empty. The notion of validity allows to start and
stop the engine automatically at runtime by just checking the status of the system. By stopping the engine
if the system is invalid, we eliminate any processing time needed by the engine. To check system validity,
we use directed graphs with edge coloring to model component synchronization dependencies. Notice that

2

the introduced notion of validity is only relevant for the engine: in an invalid system components can still
communicate asynchronously.

We have extended the interface and implementation of the engine to register, deregister, and pause a
component at runtime. The difference between pausing and deregistering a component is as follows. If a
component deregisters, then the engine clears all the associated data and references to this component; other
components cannot synchronize with the deregistered component unless it registers anew. If a component is
paused, other components cannot synchronize with it but the engine keeps all associated data and references
to it; the paused component can start synchronizing with other components by simply informing the engine
that it is back on track.

The rest of the report is structured as follows. Section 2 presents the JavaBIP framework. Section
3 describes our motivating case study. Section 5 presents the notion of JavaBIP system validity and the
construction of validity graphs. Section 4 presents the interaction logic and the macro-notation used to specify
JavaBIP synchronization constraints on component types. Section 6 describes the implemented software
architecture and presents performance results. Section 7 discusses related work. Section 8 summarizes the
results and future work directions.

2 The JavaBIP Framework

JavaBIP implements the BIP (Behavior-Interaction-Priority) coordination mechanism [4], for coordination of
concurrent components. In BIP, the behavior of components is described by Finite State Machines (FSMs)
having transitions labeled with ports and extended with data stored in local variables. Ports form the
interface of a component and are used to define its interactions with other components. They can also
export part of the local variables, allowing access to the component’s data. Component coordination is
defined in BIP by means of interaction models, i.e., sets of interactions. Interactions are sets of ports that
define allowed synchronizations among components.

JavaBIP takes as input the system specification, which is provided by the user and consists of the following:

• A behavior specification for each component type, which is an FSM extended with ports and data
provided as an annotated Java class.

• The glue specification, which is the interaction model of the system, is provided as an XML file. It
specifies how the transitions of different component types must be synchronized, i.e., synchronization
constrains.

• The optional data-wire specification, which is the data transfer model of the system, is provided as an
XML file. It specifies which and how data are exchanged among component types.

For property analysis, the system specification can be automatically translated into an equivalent model
of the system in the BIP language. This model can then be verified for deadlock freedom or other properties,
using DFinder [6], ESST or nuXmv [7]. Other analyses can be performed using any tool for which a model
transformation from BIP is available.

3 Motivating Case Study

Modular phones require application layer specifications that can handle dynamic device insertion and removal
at runtime. In the rest of the paper, we refer to the phone’s devices as modules. In this case study, we model
in JavaBIP some of the application layer protocols offered by Google’s Greybus specification1.

1https://github.com/projectara/greybus-spec

3

Figure 1: Modular phone architecture.

Application Layer ::= (AP Message Handler).(Controller)+.(Driver)∗

AP Message Handler ::= (AP Request Worker).(AP Response Worker).
(AP Message Worker).(AP Receiver Fifo)

Controller ::= (Control Protocol Controller).(Log Protocol Controller).
(Camer Protocol Controller).(Power Supply Protocol Controller)

Driver ::= (Battery Driver)∗.(Camera Driver)∗

Camera Driver ::= (Control Connect Handler).(Control Disconnect Handler).
(Log Handler).(Camera Capture Handler).(Camera Stream Handler)

Battery Driver ::= (Control Connect Handler).(Control Disconnect Handler).
(Log Handler).(Power Supply Handler)

Figure 2: Hierarchical decomposition of the Application Layer into components.

Figure 1 illustrates the composite component types, of the case study. Greybus requires that exactly
one application processor (AP) is present in the system for storing user data and executing applications.
We consider two types of modules that can be inserted on the phone’s frame at runtime: 1) power supply
modules, e.g., batteries and 2) cameras. Any number of instances of these two types can be inserted or
removed from the phone at runtime. Figure 1 presents an example configuration of a phone, in which
two battery and one camera modules are connected. These modules communicate with the AP through
dedicated device class connection protocols: the camera, power supply, and log protocols. The latter can be
used by any module to send human-readable debug log messages to AP. Additionally, AP uses the control
protocol to perform basic initialization and configuration actions with other modules. If no power supply
or camera modules are connected, the system configuration would consist of the AP Message Handler,
Control Protocol Controller, the Log Protocol Controller, Camera Protocol Controller, and the
Power Supply Protocol Controller composite components. The grammar in Fig. 2 shows how to obtain
the desired systems as the incremental composition of components. Operators . (dot), ·∗ and ·+ are used as
usual to denote composition and repetition. Notice that Fig. 1 illustrates only one of the possible system

4

configurations that are described by the grammar in Fig. 2.
A Greybus protocol defines a number of Greybus operations, which are request-response pairs of remote

procedure calls from one module to another. The bi-directional arrows in Fig. 1 represent Greybus operations.
For instance, the AP very often needs to retrieve information from other modules. This requires that a
message requesting information be paired with a response message containing the information requested. In
many cases, Greybus operations need to be performed in a specific order. Additionally, the access to shared
resources such as memory and logging services needs to be controlled among modules. We enforce action
flow of Greybus operations, as well as controlled access to the phone’s shared resources with JavaBIP. We
developed the case study using the WebGME-BIP design studio2, the complete system exceeds 2000 lines of
code.

3.1 Componentization and Interaction Model

We have used architecture diagrams [30] to model the architecture style of the case study, which is shown
in Fig. 3. An architecture style defines the set of all possible architectures for any number of components
in the system. An architecture diagram consists of a set of component types, with associated cardinality
constraints representing the expected number of instances of each component type and a set of connec-
tor motifs. The boxes in Fig. 3 represent the atomic component types of the case style, which are the
following: AP Request Worker, AP Response Worker, AP Message Worker, Control Protocol Controller,
AP Receiver Fifo, Log Protocol Controller, Camer Protocol Controller, Control Connect Handler,
Power Supply Protocol Controller, Control Disconnect Handler, Log Handler, Camera Capture Handler,
Camera Stream Handler, Power Supply Handler. The cardinalities of these component types are shown in
Fig. 3 in the upper left corner of the corresponding boxes. For instance, the cardinality of the AP Request Worker

component type is 1, while the cardinality of the Camera Capture Handler component type is n. The valu-
ation of the n parameter depends on the number of cameras attached on the phone.

Figure 3 contains a set of connector motifs, which define the glue of the case study, i.e., the interaction
model. Each connector motif defines a set of BIP connectors [4], which are non-empty sets of port types.
Each connector motif end has two associated constraints: multiplicity and degree, represented as a pair
m : d. Multiplicity constrains the number of instances of the port type that must participate in a connector
defined by the motif; degree constrains the number of connectors attached to any instance of the port type.
Cardinalities, multiplicities and degrees are either natural numbers or intervals. In this case study we have
used only natural numbers.

Let us consider, for instance, the connector motif that connects the port type receive of AP Message Worker

with the port type rm of AP Receiver Fifo. The associated constraint pair of each connector motif end is
equal to 1 : 1. This means a conforming architecture of the style will include a binary BIP connector attached
to the port instance receive of the component instance of AP Message Worker and to the port instance rm

of the component instance of AP Receiver Fifo. This binary BIP connector represents a synchronization
of the actions rm and receive of the corresponding component instances. Lets us now consider the con-
nector motif that connects the port type send log of Log Handler with the port type rcvFromDriver of
Log Protocol Controller. The associated constraint pair of the connector motif end attached to send log

is equal to 1 : 1, while the constraint pair of the connector motif end attached to rcvFromDriver is equal
to 1 : n, where n is the cardinality of Log Handler. A conforming architecture that contains n instances
of Log Handler will also contain n binary connectors, each connecting a distinct component instance of
Log Handler to the unique component instance of Log Protocol Controller.

2https://github.com/anmavrid/webgme-bip

5

6/
7/

17
, 1

7:
47

B
IP

v1

P
ag

e
1

of
 1

ht
tp

:/
/lo

ca
lh

os
t:

88
88

/?
pr

oj
ec

t=
gu

es
t%

2B
B

IP
v1

&b
ra

nc
h=

m
as

te
r&

no
de

=%
2F

f%
2F

e&
vi

su
al

iz
er

=B
IP

Ed
ito

r&
ta

b=
0&

la
yo

ut
=D

ef
au

ltL
ay

ou
t

C
am

er
a_

C
ap

tu
re
_H

an
dl
er

rc
vR

eq

sn
dR

es

m

C
on

tr
ol
_D

is
co

nn
ec

t_
H
an

dl
er

rc
vR

eq
sn

dR
es

n
C
am

er
a_

St
re
am

_H
an

dl
er

rc
vR

eq

sn
dR

es

m

C
on

tr
ol
_C

on
ne

ct
_H

an
dl
er

rc
vR

eq
sn

dR
es

n

Lo
g_

H
an

dl
er

rc
vR

es
se

nd
_l
og

n

Po
w
er
_S

up
pl
y_

H
an

dl
er

sn
dR

es

rc
vR

eq

k
C
am

er
a_

Pr
ot
oc

ol
_C

on
tr
ol
le
r

sn
dT

oD
ri

re
ce

iv
e

se
nd

rc
vD

riv
er

rc
vF

ro
m
Dr

i

1
Po

w
er
_S

up
pl
y_

Pr
ot
oc

ol
_C

…

se
nd

re
ce

iv
e

sn
dT

oD
ri

rc
vF

ro
m
Dr

i

rc
vD

riv
er

1

C
on

tr
ol
_P

ro
to
co

l_
C
on

tr
ol
le
r

re
ce

iv
e

sn
dT

oD
ri

rc
vD

riv
er

se
nd

rc
vF

ro
m
Dr

i

1

AP
_R

es
po

ns
eW

or
ke

r ge
tR
es

1AP
_R

eq
ue

st
W
or

ke
r

sn
dT

oC
on

t
ro
lle
r

ge
tR
eq

1

AP
_M

es
sa

ge
W
or

ke
r

sn
dR

es

sn
dR

eq

re
ce

iv
e

1

AP
_R

ec
ei
ve

rF
ifo

rm ad
d1

Lo
g_

Pr
ot
oc

ol
_C

on
tr
ol
le
r

re
ce

iv
e

rc
vD

riv
er

sn
dT

oD
ri

se
nd

rc
vF

ro
m
Dr

i

1

1:
1

1:
1

2:
1

1:
1

1:
1

1:
1

1:
k

..
.

..
.

1:
m

1:
m

1:
m

1:
m

1:
m

1:
m

1:
n

1:
n

1:
n

1:
n

1:
n

1:
n

1:
n

1:
n

1:
n

2:
1

2:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

1:
1

F
ig

u
re

3
:

M
o
d

u
la

r
p

h
o
n

e
a
rc

h
it

ec
tu

re
st

y
le

.

6

4 Interaction Logic and Macro-notation

The glue specification is defined in JavaBIP through a macro-notation, similar to the one introduced in
[13], based on first-order interaction logic. This notation imposes synchronization constraints based on
component types rather than on component instances, which allows a developer to write a glue specification
without knowing the exact number of components in the system. Instances of component types for which
synchronization constraints exist in the glue specification can be dynamically registered or deregistered at
runtime without requiring additional input or changes in the glue specification. In the next subsections, we
present the propositional and first-order interaction logic, as well as the JavaBIP Require/Accept macro-
notation, which is based on first-order interaction logic.

4.1 Propositional Interaction Logic

The propositional interaction logic (PIL), studied in [10, 11], is a Boolean logic used to characterize a
configuration, i.e., a non-empty set of interactions among components on a global set of ports P . We assume
that P is given and a ⊆ P .

Definition 1. An interaction a is a set of ports a ⊆ P such that a 6= ∅.

Syntax 1. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P . (1)

Conjunction is defined as follows: φ1 ∧ φ2
def
= (φ1 ∨ φ2) . Implication is defined as follows: φ1 ⇒ φ2

def
=

φ1 ∨φ2. To simplify the notation, we omit conjunction in monomials, e.g., writing sr1r2 instead of s∧r1∧r2.

Semantics 1. The meaning of a PIL formula φ is defined by the following satisfaction relation. Let γ be a
non-empty configuration. We define: γ |= φ iff for all a ∈ γ, φ evaluates to true for the valuation induced
by a: p = true, for all p ∈ a and p = false, for all p 6∈ a.

The operators meet the usual Boolean axioms and the additional axiom
∨

p∈P p = true meaning that
interactions are non-empty sets of ports.

Example 1. Consider a Star architecture, where a single component C acts as the center, and three other
components S1, S2, S3 communicate with the center through binary synchronizations. Component C has
a port p and all other components have a single port qi (i = 1, 2, 3). The corresponding PIL formula is:
pq1q2 q3 ∨ pq1 q2q3 ∨ pq1 q2 q3.

4.2 First-order Interaction Logic

We extend the propositional interaction logic presented in Subsection 4.1 with quantification over components
to define interactions independently from the number of component instances. This extension is particularly
useful because, in practice, systems are built from multiple component instances of the same component
type. A first-order interaction logic was also presented in [13] with additional history variables. We make
the following assumptions:

• A finite set of component types T = {T1, . . . , Tn} is given. Instances of a component type have the
same interface and behavior. We write c :T to denote that a component c is of type T .

7

Figure 4: Three BIP components

• The interface of each component type has a distinct set of ports. We denote by T.p the port type p, i.e.,
a port belonging to the interface of type T . We write T.P to denote the set of port types of component
type T and T .P to denote the set of port types of all component types. We write c.p, for a component
c :T , to denote the port instance of type T.p.

Let φ denote any formula in PIL.

Syntax 2. The first-order interaction logic (FOIL) is defined by the grammar:

Φ ::= true | φ | Φ | Φ ∨ Φ | ∃c : T
(
Pr(c)

)
.Φ , (2)

where T is a component type, which represents a set of component instances with identical interfaces and
behaviour. Variable c ranges over component instances and must occur in the scope of a quantifier. Pr(c) is
some set-theoretic predicate on c (omitted when Pr = true).

Additionally, we define the usual notation for the universal quantifier:

∀c :T
(
Pr(c)

)
.Φ

def
= 6 ∃c :T

(
Pr(c)

)
.Φ .

Semantics 2. The semantics is defined for closed formulas, where, for each variable in the formula, there
is a quantifier over this variable in a higher nesting level. We assume that the finite set of component types
T = {T1, . . . , Tn} is given. Models are pairs 〈B, γ〉, where B is a set of component instances of types from
T and γ is a configuration on the set of ports P of these components. For quantifier-free formulas, the
semantics is the same as for PIL formulas. For formulas with quantifiers, the satisfaction relation is defined
as follows:

〈B, γ〉 |= ∃c : T
(
Pr(c)

)
.Φ , iff γ |=

∨
c′:T∈B∧Pr(c′)

Φ[c′/c],

where c′ : T ranges over all component instances of type T ∈ T and Φ[c′/c] is obtained by replacing all
occurrences of c in Φ by c′.

Example 2. Consider three components shown in Fig. 4: a sender S and two receivers R1, R2. The sender
has a port s for sending messages and each receiver has a port ri (i = 1, 2) for receiving them. We consider
the following four coordination schemes:

• Rendezvous ensures strong synchronization between S and all Ri. Rendezvous is specified by a single
interaction involving all ports represented by the monomial sr1r2. This interaction can occur only if
all of the components are in states enabling transitions labelled, respectively, by s, r1 and r2.

8

• Broadcast allows all interactions involving S and any (possible empty) subset of Ri. Broadcast is
represented by the formula s, which can be expanded to sr1 r2 ∨sr1r2 ∨sr1r2∨sr1r2. These interactions
can only occur if S is in a state enabling s. Each Ri participates in an interaction only if it is in a
state enabling ri.

• Atomic broadcast ensures that either all or none of the receivers are involved in the interaction. Atomic
broadcast is be characterised by the formula sr1r2∨sr1r2. The sr1r2 interaction corresponds to a strong
synchronization among the sender and all receivers.

Example 3. The Star architecture (Ex. 1) can be expressed in FOIL for any number of components of type
S as follows:

∃c :C. ∀s :S. (c.p s.q) ∧ ∀s′ :S (s 6= s′). (s.q s′.q) ∧ ∀c′ : C(c = c′). true.

4.3 JavaBIP Require/Accept Macro-notation Based on FOIL

JavaBIP relies on component types, rather than on component instances for the definition of synchronization
constraints. All instances of a given component type are restricted with the same set of synchronization
constraints.

Consider a port p of a component type T , which labels one or more transitions of T . The associated
synchronization constraint to all transitions of T labeled by p is the conjunction of two constraints: the
causal and acceptance constraints. Similarly to [13], two macros are used: 1) the Require macro and 2) the
Accept macro to define the causal and acceptance constraints, respectively. Next, we describe the meaning
of the two macros through examples.

4.3.1 The Require Macro

is used to specify ports required for synchronization. Let T 1, T 2 ∈ T be two component types. The following:

T1.p Require T2.q ≡ ∀c1 :T1. ∃c2 :T2. ∀c3 :T2 (c2 6= c3).
(
c1.p ⇒ c2.q c3.q

)
,

means that, to participate in an interaction, each of the ports p of component instances of type T1 requires
synchronization with precisely one of the ports q of component instances of type T2. In comparison with [13],
we have opted for a macro-notation where the cardinality is explicit: should two instances of the same port
type be required, this is specified by explicitly putting the required port type twice:

T1.p Require T2.q T2.q ≡ ∀c1 :T1. ∃c2, c3 :T2. ∀c4 :T2 (c2 6= c3 6= c4).(
c1.p ⇒ c2.q c3.q c4.q

)
,

and so on for higher cardinalities. We call effect what is specified in the left-hand side of Require (e.g.,
T1.p) and cause what is specified in the right-hand side (e.g., T2.q T2.q). A cause consists of a set of OR-
causes, where each OR-cause is a set of ports. For p to participate in an interaction, all the ports belonging
to at least one of the OR-causes must synchronize. We define:

T1.p Require T2.q T2.q ; T2.r ≡ ∀c1 :T1.(
∃c2, c3 :T2. ∀c4 :T2 (c2 6= c3 6= c4).

(
c1.p ⇒ c2.q c3.q c4.q

)
∨
∃c2 :T2. ∀c3 :T2(c2 6= c3).

(
c1.p ⇒ c2.r c3.r

))
,

which means that p requires either the synchronization of two instances of q or one instance of r. Notice
the semicolon that separates the two OR-causes.

9

4.3.2 The Accept Macro

defines optional ports for synchronization, i.e., it defines the boundary of interactions. This is expressed by
explicitly excluding from interactions all the ports that are not optional. Let T 1, T 2 ∈ T be two component
types. The following:

T1.p Accept T2.q ≡ ∀c1 :T1.

 ∧
T.r∈T .P\{T2.q}

∀c :T. (c1.p⇒ c.r)

 ,

means that p accepts he synchronization of instances of q but does not accept instances of any other port
types.

The generalization of the above definitions to more complex macros is straightforward, but cumbersome.
Therefore we omit it here.

Example 4. The synchronization constraints of the Star architecture (Ex. 3) are specified by the following
combination of macros:

S.q Require C.p S.q Accept C.p

C.p Require S.q C.p Accept S.q ,

Example 5. Let us now consider a more general example to illustrate the expressiveness of the synchro-
nization constraints. Assume that there are five component types A, B, C, D, E with port types a, b, c,

d, e, respectively. Through the Require macros, we enforce the following five constraints: 1) A.a requires
synchronization with two instances of B.b; 2) B.b requires synchronization either with a) a single instance
of A.a and a single instance of C.c or b) just two instances of C.c; 3) C.c does not require synchronizations
with other ports (however it accepts synchronisations with any possible combination of ports A.a, B.b, C.c);
4) D.d requires synchronization with a single instance of E.e and 5) E.e does not require synchronizations
with other ports (however it accepts synchronisations with any number of ports D.d). Notice that by the
combination of the first two require macros, a synchronisation involving exactly an instance of A.a and two
instances of B.b is not allowed, since B.b requires at least one instance of C.c to also participate in the
synchronisation.

A.a Require B.b B.b A.a Accept A.a B.b C.c

B.b Require A.a C.c ; C.c C.c B.b Accept A.a B.b C.c

C.c Require − C.c Accept A.a B.b C.c

D.d Require E.e D.d Accept E.e

E.e Require − E.e Accept D.d

5 Defining System Validity

In the previous, static JavaBIP implementation, a developer would first register all components to the engine
and then start the engine manually. Since, in the dynamic JavaBIP implementation, components may register
or deregister on the fly, we need a notion of validity so that depending on whether there are enough registered
components, the engine can automatically start or stop its execution. We start by formally defining atomic
components, BIP systems and valid BIP systems.

10

Definition 2 (Component). A component B is a Finite State Machine represented by a triple (Q,P,→),
where Q is a set of states, P is a set of communication ports, →⊆ Q × P × Q is a set of transitions, each
labeled by a port.

Below, we use the common notation, writing q
p→ q′ instead of (q, p, q′) ∈→ .

Definition 3 (BIP System). A BIP system is defined by a composition operator parameterized by a set of
interactions γ ⊆ 2P . Bn = γ(B1, . . . , Bn) is a Finite State Machine (Q, γ,→), where Q =

∏n
i=1Qi and →

is the least set of transitions satisfying the following rule:

a = {pi}i∈I ∈ γ ∀i ∈ I : qi
pi→ q′i ∀i /∈ I : qi = q′i

(q1, . . . , qn)
a→ (q′1, . . . , q

′
n)

The inference rule says that a BIP system, consisting of n components, can execute an interaction a ∈ γ,
iff for each port pi ∈ a, the corresponding component Bi, can execute a transition labeled with pi; the states
of components that do not participate in the interaction remain the same. The set of possible interactions
of a BIP system is defined in JavaBIP by the glue specification, i.e., the set of Require and Accept macros.
We write B : T to denote a component B of type T . We denote by T the set of all component types of a
BIP system.

Definition 4 extends Def. 3 to describe a valid BIP system. System validity is defined from the perspective
of starting or stopping the JavaBIP engine, which orchestrates component interaction (synchronization of
component actions). Notice that even if a system is not valid according to Def. 4, JavaBIP components can
be communicating in an asynchronous manner.

Definition 4 (Valid BIP System). A BIP system (Q, γ,→) is valid iff γ 6= ∅.

Remark 5.1. In Def. 2 and Def. 3, for the sake of simplicity, we omit the presentation of data-related
aspects. However, it should be noted that the full JavaBIP [9] allows data variables within components. In
such cases, component transitions can be guarded by Boolean predicates on data variables. Notice that in
Def. 4 we do not consider guards. This is a design choice that we made. The result of guard evaluation
might easily change multiple times throughout the system lifecycle, e.g., based on the components internal
state or on component interaction. Thus, it is undesirable to base engine execution on such often recurring
changes, which could actually result in increasing the engine’s overhead.

Definition 4 says that a BIP system is valid if and only if there are enough registered components such
that the interaction set of the system is not empty. To determine the validity of a system, we use directed
graphs with edge coloring to model dependencies among components. The generation of the validity graph
is based on the Require macros of the glue specification, since these define the minimum number of required
interactions among the components. The complete glue specification is used by the engine for orchestrating
component execution..

Definition 5 (Validity graph). A labelled graph G = (T , E, c) is the validity graph of a set of Require macros
iff:

1. the vertex set T is the set of component types defined in the Require macros;

2. the edge set E contains a directed edge (T1, T2) iff there exists a Require macro that contains T1 in
the effect and T2 in an OR-cause;

3. for each edge (T1, T2) ∈ E, the counter c : E → Z is initialized with the cardinality of T2 in the
corresponding OR-cause.

11

The edges of the graph are colored such that: 1) all edges corresponding to an OR-cause of a Require macro
are colored the same; 2) edges corresponding to different OR-causes are colored differently.

Clearly, there always exists a validity graph for any set of Require macros. Note that the outgoing edges
of two different vertices may have the same color.

Figure 5: Validity graph of Ex. 4.

Fig. 5 shows the validity graph of the Star architecture de-
fined in the glue specification of Ex. 4. The two vertices rep-
resent the two component types S, D of the example. Since,
component type S requires synchronization with exactly one in-
stance of component type C (cardinality = 1), there is an edge
from vertex S to vertex C labeled by a counter initialised to 1.
Analogously, since, component type C requires synchronization
with exactly one instance of component type S (cardinality =
1), there is an edge from vertex C to vertex S labeled by a
counter initialised to 1.

Fig. 6 shows the validity graph that corresponds to the glue
specification of Ex. 5. There are five vertices A, B, C, D, E each representing a component type of the
example. Let us consider the second and third Require macros of the example. In the second Require macro
notice the two OR-causes, each represented by edges with different colors (red and green) in Fig. 6. In the
first OR-cause, B requires one instance of A and one instance of C, represented by the red edges in Fig. 6
both labeled by 1 since both cardinalities are equal to 1. In the second OR-cause, B requires two instances
of C, represented by the green edge in Fig. 6 labeled by 2. In the third Require macro of the example, C does
not require synchronization with any other component of the system, and thus, there is no outgoing edge
from vertex C.

Figure 6: Validity graph of Ex. 5.

Fig. 7 shows the validity graph of the modular phone
case study. The are 13 vertices, each one representing an
atomic component type of the case study (Fig. 2). These
are the following: AP Request Worker, AP Response Worker,
AP Message Worker, AP Receiver Fifo, Control Protocol

Controller, Log Protocol Controller, Camera Protocol

Controller, Power Supply Protocol Controller, Control

Connect Handler, Control Disconnect Handler, Log Handler,
Camera Capture Handler, Camera Stream Handler, and
Power Supply Handler. Due to space limitations, we have
substituted the full names with their acronyms. For instance,
we have substituted AP Message Handler by APMW. In case
of acronym conflicts, we added more letters, e.g., we have
substituted AP Request Worker by APReqW, and AP Response

Worker by APResW.
Let us now consider two of the Require macros of the case

study (the full set of Require and Accept macros can be found in the Appendix).

PSPC.rcvFromDri Require PSH.sndRes PSH.sndRes

APRF.add Require ConPC.snd; CamPC.snd; PSPC.snd; LPC.snd

Since, component type Power Supply Protocol Controller requires synchronization with two instances
of component type Power Supply Handler, there is an edge from vertex PSPC to vertex PSH labeled by a

12

1

execute

Component
Pool

Tracker Peer

1

1

A B

C

2

1

1
2

D E
1

A B

C

2

1

1
1

D E
1

A B

C

2

1

1
1

D E
0

A B

C

1

1

0
1

D E
0

A B

C

1

1

0
1

D E
1

S C

1

1

APReqW

APResW

APMW

APRF

ConPC

LPC

CamPC

PSPC

ConCH

ConDH

LH

CamCH

CamSH

PSH

1

1 1

1

1

1

1 2

1

1

1

1

1

1

1

1

1

APReqW

APResWAPMW

APRF

ConPC

LPC

CamPC

PSPC

ConCH

ConDH

LH

CamCH

CamSH

PSH

0 1

1

1 1

1
1

1

1

1

1

1

1

1

0

0

Text

Stack of
Coordinators

Engine Kernel

A B

C

2

1

1

2
D

E

1

A B

C

2

1

1
2

D

E

1

1

23

3-step protocolValidity graph

start

stop

send

execute

update

register

deregister

pause

stop
Behavior

Glue

Data
CurrentState

En
co

de
rs

specifyGlue

Glue
Data

Data

Current
StateBehavior

Total Constraint
Behavior

1

1
1

1
1

1

1 1

1

1

1

1

11

1

1

1

1
1

1
1

1
1

1

Figure 7: Validity graph of the Modular Phone case study.

counter initialized to 2. Furthermore, component type AP Receiver Fifo requires synchronization either
with an instance of component type Control Protocol Controller or an instance of component type
Camera Protocol Controller or an instance of Power Supply Protocol Controller or an instance of
Logger Protocol Controller. Thus, there are four outgoing edges from vertex APRF, each labeled by a
counter initialized to 1 and colored by a different color, to vertices ConPC, CamPC, PSPC, and LPC, respectively.
In Fig. 7, edges with different colors are also represented by different line styles.

Definition 6 (Dynamic change in validity graph). In the event of a dynamic change, a validity graph is
updated as follows:

1. If a component instance of type T is registered, the counters of all incoming edges of vertex T are
decremented by 1.

2. If a component instance of type T is deregistered or paused, the counters of all incoming edges of vertex
T are incremented by 1.

Proposition 5.2 (Determining system validity). Consider a BIP system and a corresponding validity graph.
The BIP system is valid iff for at least one vertex of the validity graph, an instance of the vertex’s corre-
sponding type is registered and the counters of all outgoing edges of at least one color are equal to or less
than 0.

13

Figure 8: Changes in validity graph when adding/removing components.

Proof. Necessity: Since γ 6= ∅, there exists at least one interaction a ∈ γ. This means that there exists a
Require macro such that the effect is the type of a port instance p ∈ a and the causes contain an OR-cause
ORp that consists of a subset of the types of port instances in a. We denote this subset by Q. For each port
type q ∈ Q, there exists at least one instance of q ∈ a. The cardinality of each port type in ORp is equal
to the number of corresponding instances in a. By Definition 5, there exists a vertex v in the validity graph
that corresponds to the component type that contains p and a set of outgoing edges. Let us denote Vp the
subset of outgoing edges of v that correspond to ORp, which are colored the same. Since a ∈ γ, this implies
that all counters of Vp are equal to or less than 0 and there is at least a registered instance of the component
type that contains p.

Sufficiency: We know that there exists a vertex with a registered component instance and a color such
that the counters of all the outgoing edges of that color are equal to or less than 0. Consider a Require

macro with an OR-cause ORc that corresponds to this color. Since all the counters of edges of this color
are equal to 0, we know that there exists a sufficient number of registered instances of every type in ORc .
Since the effect of the Require macro is also registered, there is an enabled interaction involving component
instances corresponding to the effect and the elements of ORc . This implies that the system is valid, which
concludes the proof.

Example 6. Let us now consider a system with the glue specification of Ex. 5. Fig. 8 present the changes
of the corresponding validity graph (see Fig. 6) when 1) an instance of B is registered; 2) an instance of E is
registered; 3) an instance of C is registered and 4) the instance of E is deregistered. Notice that the system
becomes valid when an instance of E is registered and becomes invalid when the instance of E is deregistered.

To start and stop the engine, we determine first whether the system is valid by using Prop. 5.2. Nev-
ertheless, we do not need to check system validity every time a component registers/deregisters/pauses.
Corollaries 5.3 and 5.4 define such cases.

Corollary 5.3. If a BIP system Bn is valid and a component is registered, then the new BIP system Bn+1

is also valid.

Proof. It follows directly from Proposition 5.2 and Definition 6.

14

Figure 9: Dynamic JavaBIP Engine software architecture.

Corollary 5.4. If a BIP system Bn is invalid and a component is deregistered or paused, then the new BIP
system Bn−1 is also invalid.

Proof. It follows directly from Proposition 5.2 and Definition 6.

6 Implementation

Next, we discuss the implementation of the dynamic JavaBIP extension, during which the implementation of
the JavaBIP engine has significantly changed. Let us consider first the interface of the JavaBIP engine, i.e.,
BIPEngine. In the static implementation, BIPEngine consisted of the following functions: 1) register used
by a developer to register a component to the engine; 2) inform used by a component to inform the engine of
its current state and enabled transitions; 3) specifyGlue used by a developer to send the glue specification
to engine; 4) start used by a developer to start the engine thread and 5) stop used by a developer to stop
the engine.

We updated BIPEngine as follows. Function start was removed, since the engine thread is now started
automatically based on whether enough components are registered to form a valid system. We added two
functions: 1) deregister used by a developer or the component itself (e.g., in the case of a failure) to
deregister from the engine and 2) pause used by a developer or the component (e.g., in the case that the
component is going to communicate asynchronously with other components for an amount of time) to pause
synchronizations with other components. Function register was considerably updated, as well as function
stop which can also be called internally by the engine in the case of an invalid system. The remaining
functions were been updated. Figure 9 shows the software architecture of the JavaBIP engine. The arrows
labeled register, deregister, stop, specifyGlue, and pause represent calls to the BIPEngine functions.

The ComponentPool object was added, which is used as an interface to the validity graph described in
Def. 5. The ComponentPool starts the core engine (comprising a stack of coordinators and the engine kernel),
when the system becomes valid, and stops it, when the system becomes invalid. System validity is checked
whenever a component is registered, deregistered or paused, excluding the cases described in Cor. 5.3 and
5.4. Whenever a component is registered or deregistered without affecting the validity of the system, the
Component Pool sends an update registration/deregistration event to the core engine.

15

Figure 10: Constraint computation phases.

The engine composes and solves the various constraints of the system. Its implementation is based on
Binary Decision Diagrams (BDDs) [2], which are efficient data structures to store and manipulate Boolean
formulas.3 The imposed constraints encode information about the behavior, glue, data, and current state of
the components. Current state constraints allow us to compute the enabled transitions of the component.
For each type of constraints, we discuss which parts must be recomputed when registering components at
runtime. There is no need to recompute these constraints when a component is paused or deregistered.
Whenever constraints are recomputed, the Coordinators send these to the kernel.

The formulas that define the behavior, glue, data, and current state constraints were presented in [9].
Figure 10 summarizes the constraint computation. The white color indicates that the constraint is computed
only once at system initialization. The light gray indicates that the constraint is recomputed when a
component is registered. The dark gray color indicates that the constraint is recomputed during each
execution cycle.

The behavior constraint of a component includes the ports and states of the component. For each port,
a Boolean port variable is created. Similarly, for each state, a Boolean state variable is created. Behavior
constraints are built using these port and state variables. The total behavior constraint is computed as the
conjunction of all component behavior constraints. When a component is registered, its behavior constraint
is computed and conjuncted to the total behavior constraint. When a component is deregistered, its port
variables are set to false.

The glue constraint is computed by interpreting the Require and Accept macros of the glue specification.
The same Boolean port variables that were previously created for the behavior constraints are used for
the glue constraint as well. The glue constraint must be recomputed, in a valid system, every time a new
component is registered.

For the data constraint, additional data variables have to be created. The data constraints represent how
data is exchanged among components, i.e., which components are providing data and which components
are consuming data. For each pair of components exchanging data, a data variable is created. When a
component is registered, the data constraints that involve the newly arrived components are recomputed.
Components exchange data at the beginning of each execution cycle of the system. Based on the exchanged
data, components may disable some of the possible interactions. As a result, a subset of data constraints is
recomputed at each execution cycle.

The current state constraint of a component is computed when a component informs of its disabled
transitions due to guard evaluation. The total current state BDD is the conjunction of the current state
constraints of all registered components. During engine execution, i.e., in a valid system, the total current

3We have used the JavaBDD package, available at http://javabdd.sourceforge.net

16

http://javabdd.sourceforge.net

state constraint is computed at each execution cycle of the engine and is further conjuncted with the total
behavior constraint, the glue constraint, and the total data constraint.

The execution of a JavaBIP valid system is driven by the engine kernel applying the following protocol
in a cyclic manner:

1. Upon reaching a state, all component constraints are sent to the kernel;

2. The kernel computes the total constraint, which is the conjunction of the total behavior, glue, current
state and data constraints. Thus, it computes the possible interactions satisfying the total system
constraint and picks one of them;

3. The kernel notifies the Coordinators of its decision by calling execute, which then notify the compo-
nents to execute the necessary transitions.

Notice that a component can be registered during any step of the engine protocol. The engine, however
will only include the newly registered component in the BDD computation at the beginning of the next
cycle. System validity is checked, when a component is paused or deregistered. If the system remains valid
and the engine is executing the second or third step of the engine protocol, the engine sets the port variables
of this component to false and recomputes the possible interactions.

6.1 Performance Results

We show performance results for the modular phone case study. The experiments were performed on a 3.1
GHz Intel Core i7 with 8GB RAM. We started with 5 registered components and registered up to 45 additional
components. The JavaBIP models are available online4. Table 1 summarizes the engine’s computation times
and the BDD Manager peak memory usage for various numbers of components. We present and discuss
three different engine times: 1) the time needed to perform a complete engine execution cycle (three-step
protocol run by the Engine kernel); 2) the time needed to (partially) recompute the behavior, glue, and
data BDD constraints due to the registration of a new component; 3) the time needed to add or remove a
component from the component tool and check the validity of the system.

The first column shows the number of components in the system, after the registration or deregistration
of a component. For instance, 10 means that a new component was registered and the total number of
components in the system is now 10. The number of components is also decreased in two cases, when it is
equal to 11 and equal to 29. This means that a component was deregistered or paused and the total number
of components in the system is 11 or 29, respectively.

The second column shows the average engine execution time of the first 1000 engine cycles after a
component registration or deregistration. The system becomes valid and the engine is started upon the
registration of the 12th component. As a result, the engine execution times are equal to 0 for the first two
rows of the table. If the engine had been started, for instance, after the registration of the 5th component
(without the system being valid), the engine would have needed < 1 ms per execution cycle. This means
that an overhead of seconds or minutes could have been added in the system’s execution if more than a
certain number of engine execution cycles (e.g., 100000) had been performed by the time the system became
valid.

The third column of Table 1 shows the amount of time needed to recompute the behavior, glue, and
data constraints of the system due to a component registration. The first two rows are equal to 0 since
the system is invalid and thus, no BDD computation is required. If the engine had been started before the
system became valid, the BDDs would have been recomputed upon the registration of each new component.

4https://github.com/sbliudze/javabip-itest

17

Table 1: Engine times and BDD Manager peak memory usage. Times are in milliseconds and memory usage
is in Megabytes.

Number of
components

Time: Engine
execution cycle

Time: BDD
(re)computation

Time:
Component pool

Memory

5 0 0 2.078 0
10 0 0 2.186 0
12 <1 63 3.654 0.059
11 0 0 2.908 0.057
20 <1 151 <1 0.083
25 1.149 194 <1 0.099
30 1.247 239 <1 0.129
29 1.241 0 2.451 0.121
40 1.399 283 <1 0.199
50 1.896 337 <1 0.254

For instance, after the registration of the 5th component, the engine would have needed 13 ms and after
the registration of the 11th component, the engine would have needed additional 49 ms to recompute the
BDDs. The fifth column shows the peak memory usage of the BDD manager after a component registration
or deregistration.

Finally, the fourth column of Table 1 presents the amount of time needed to add or remove a component
from the component pool and check for system validity. The time needed is very low, in some cases even less
than 1 ms. These were the cases that system validity was not checked due to the results of Cor. 5.3 and 5.4.
The system became valid when the 12th component was registered. This required the maximum amount of
time (3.654 ms), since the full graph was checked for validity, and then the core engine thread was started.
Next, a component was deregistered, the system became invalid again, and the engine thread was stopped.
The amount of time needed by the component pool was 2.908 ms.

7 Related Work

Dynamicity in BIP has been studied by several authors [13, 16, 20]. In [13], the authors present the Dy-BIP
framework that allows dynamic reconfiguration of connectors among the ports of the system. They use history
variables to allow sequences of interactions with the same instance of a given component type. JavaBIP can
emulate history variables using data. In contrast, our focus is on dynamicity due to the creation and deletion
of components that is often encountered in modern software systems that are not restricted to the embedded
systems domain. Additionally, the interface-based design and the modular software architecture of JavaBIP
allow us to easily extend the JavaBIP implementation.

Our approach is closest to [16] and [21]. In [16], two extensions of the BIP model are defined: reconfigurable—
similar to Dy-BIP—and dynamic, allowing dynamic replication of components. They focus on the opera-
tional semantics of the two extensions and their properties, by studying their encodability in BIP and
Place/Transition Petri nets (P/T Nets). Composition is defined through interaction models, without consid-
ering structured connectors. In contrast, our work focuses mostly on the connectivity among components,
defined by Require/Accept relations. In [21], the BIP coordination mechanisms are implemented by a set
of connector combinators in Haskell and Scala. Functional BIP provides combinators for managing connec-
tions in a dynamically evolving set of components. However, as in [16], such evolution must be managed by
explicit actions of existing components. In contrast, the JavaBIP approach allows components to be created

18

independently, only requiring that they be subsequently registered with the JavaBIP engine.
The Reo coordination language [33]—which realizes component coordination through circuit-like connec-

tors built of channels and nodes—provides dedicated primitives for reconfiguring connectors by creating new
channels (Ch), and manipulating channel ends and nodes (split, join, hide and forget). A number of
papers study reconfiguration of Reo connectors. In particular, [18] provides a framework for model checking
reconfigurable circuits, whereas [26] and [27] take the approach based on graph transformation techniques.
The main difference between connector reconfiguration in Reo and dynamicity in JavaBIP is that, in Reo,
reconfiguration operations are performed on constituent elements of the connector. Thus, in principle, such
operations can affect ongoing interactions. This is not possible in JavaBIP, since interactions are completely
atomic.

Three main types of formalisms have been studied in the literature for the specification of dynamic
architectures and architecture styles [14]: 1) graph grammars, 2) process algebras, and 3) logics. Graph
grammars have been used to specify reconfiguration in a dynamic architecture through the use of graph
rewriting rules. Representative approaches include the Le Métayer approach [28], where nodes plus CSP-like
behavior specifications are components and edges are connectors. A different way of representing software
architectures with graph grammars can be found in [23], where hyperedges with CCS labels are components
and nodes are communication ports. Other graph-based approaches are summarized in [15]. None of these
approaches offers tool support.

Additionally, process algebras have been used to define dynamic architectures as part of several architec-
ture description languages (ADLs). For instance, π-calculus [32] was used in Darwin [29] and LEDA [17],
CCS was used in PiLar [19], and CSP was used in Dynamic Wright [3]. In comparison with our approach,
Darwin and PiLar support only binary bindings (connectors), while in Dynamic Wright and LEDA there is
no clear distinction between behavior and coordination since connectors can have behavior.

Logic has also been used for the specification of dynamic software architectures and architecture styles.
Alloy’s first-order logic [25] was used in [22] for the specification of dynamic architectures, while the Alloy
Analyzer tool was used to analyze these specifications. JavaBIP specifications can also be analyzed [6, 7],
however, the main focus of JavaBIP is runtime coordination, which is not offered in [22]. Configuration
logics [31] were proposed for the specification of architecture styles, which however, in their current form do
not capture dynamic change.

8 Conclusion and Future Work

We presented an extension of the JavaBIP framework for coordination of software components that can
register, deregister and pause at runtime. To handle this type of dynamicity, JavaBIP uses a macro-notation
based on first-order interaction logic that allows specifying synchronization constraints on component types.
This way, a developer is not required to know the exact number of components that need to be coordinated
when specifying the synchronization constraints of a system. Additionally, we introduced a notion of system
validity, which we use to start and stop the JavaBIP engine automatically at runtime depending on whether
there are enough registered components in the system so that there is at least one enabled synchronization
among them. In the previous, static JavaBIP implementation, developers had to manually start and stop
the engine. Starting and stopping the engine in an automatic way helps optimize JavaBIP performance since
it eliminates the engine’s overhead in the case of an invalid system.

JavaBIP implements the principles of the BIP component framework rooted in rigorous operational
semantics. Notice, however, that none of the current BIP engine implementations can handle dynamic
insertion and deletion of components at runtime. The functionality of pausing a component at runtime
makes the implementation of the JavaBIP engine more incremental. In our previous, static implementation,

19

the engine had to wait for all registered components to inform in each cycle before making any computations.
As a result, a single component could introduce a long delay in the system execution. In the current
implementation, when a component is paused, the engine does not wait for it to inform, but rather computes
the set of enabled interaction in the system that involve only the non-paused components. JavaBIP is an
open-source tool5.

In the future, we plan to work towards increasing the incrementality of the engine in the following way:
the engine does not have to wait for all non-paused components to inform but rather checks whether there is
an enabled interaction among the components that have already informed and orders its execution. To check
the enableness of interactions we plan to reuse the notion of validity graphs introduced in this paper and
extend it with additional information on component ports. Additionally, we plan on extending the engine
functionality to handle registration of new component types and synchronization patterns.

References

[1] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge,
MA, USA, 1986.

[2] S.B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-27(6):509–516, 1978.

[3] Robert Allen, Remi Douence, and David Garlan. Specifying and analyzing dynamic software architec-
tures. Fundamental Approaches to Software Engineering, pages 21–37, 1998.

[4] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung
Nguyen, and Joseph Sifakis. Rigorous Component-Based System Design Using the BIP Framework.
IEEE Software, 28(3):41–48, 2011.

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time components in
BIP. In 4th IEEE Int. Conf. on Software Engineering and Formal Methods (SEFM06), pages 3–12,
September 2006. Invited talk.

[6] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. DFinder: A tool for compo-
sitional deadlock detection and verification. In Computer Aided Verification, pages 614–619. Springer,
2009.

[7] Simon Bliudze, Alessandro Cimatti, Mohamad Jaber, Sergio Mover, Marco Roveri, Wajeb Saab, and
Qiang Wang. Formal verification of infinite-state BIP models. In International Symposium on Automated
Technology for Verification and Analysis, pages 326–343. Springer, 2015.

[8] Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina. Coordination of
software components with BIP: Application to OSGi. In Proceedings of the 6th International Workshop
on Modeling in Software Engineering, MiSE 2014, pages 25–30, New York, NY, USA, 2014. ACM.

[9] Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina. Exogenous coordi-
nation of concurrent software components with JavaBIP. Software: Practice and Experience, page n/a,
2017. Early view: http://dx.doi.org/10.1002/spe.2495.

[10] Simon Bliudze and Joseph Sifakis. The algebra of connectors—structuring interaction in BIP. IEEE
Transactions on Computers, 57(10):1315–1330, 2008.

5github.com/sbliudze/javabip-core, github.com/sbliudze/javabip-engine

20

http://dx.doi.org/10.1002/spe.2495

[11] Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra of connectors. Formal Methods in
System Design, 36(2):167–194, June 2010.

[12] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis. From high-
level component-based models to distributed implementations. In Proceedings of the tenth ACM inter-
national conference on Embedded software, EMSOFT ’10, pages 209–218, New York, NY, USA, 2010.
ACM.

[13] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling dynamic architectures
using Dy-BIP. In Software Composition (SC 2012), volume 7306 of LNCS, pages 1–16. Springer, 2012.

[14] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger. A survey of self-
management in dynamic software architecture specifications. In Proceedings of the 1st ACM SIGSOFT
Workshop on Self-managed Systems, WOSS ’04, pages 28–33, New York, NY, USA, 2004. ACM.

[15] Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, and Hernán Melgratti. Modelling dynamic soft-
ware architectures using typed graph grammars. Electronic Notes in Theoretical Computer Science,
213(1):39 – 53, 2008.

[16] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Behaviour, interaction and dynamics. In
Specification, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi, volume 8373 of LNCS,
pages 382–401. Springer, 2014.

[17] Calos Canal, Ernesto Pimentel, and José M Troya. Specification and refinement of dynamic software
architectures. In Software Architecture, pages 107–125. Springer, 1999.

[18] Dave Clarke. A basic logic for reasoning about connector reconfiguration. Fundamenta Informaticae,
82(4):361–390, 2008.

[19] Carlos E Cuesta, Pablo de la Fuente, and Manuel Barrio-Solárzano. Dynamic coordination architecture
through the use of reflection. In Proceedings of the 2001 ACM symposium on Applied computing, pages
134–140. ACM, 2001.

[20] Cinzia Di Giusto and Jean-Bernard Stefani. Revisiting glue expressiveness in component-based systems.
In COORDINATION 2011, pages 16–30. Springer, 2011.

[21] Romain Edelmann, Simon Bliudze, and Joseph Sifakis. Functional BIP: Embedding connectors in
functional programming languages. Journal of Logical and Algebraic Methods in Programming, 2017.
Under review.

[22] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising software architectures for distributed
systems. In Proceedings of the first workshop on Self-healing systems, pages 33–38. ACM, 2002.

[23] Dan Hirsch, Paola Inverardi, and Ugo Montanari. Graph grammars and constraint solving for software
architecture styles. In Proceedings of the third international workshop on Software architecture, pages
69–72. ACM, 1998.

[24] Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of software architectures
using the chemical abstract machine model. Software Engineering, IEEE Transactions on, 21(4):373–
386, 1995.

21

[25] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 11(2):256–290, 2002.

[26] Christian Koehler, David Costa, José Proença, and Farhad Arbab. Reconfiguration of Reo connectors
triggered by dataflow. ECEASST, 10, 2008.

[27] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Modeling dynamic reconfig-
urations in Reo using high-level replacement systems. Science of Computer Programming, 76(1):23–36,
2011.

[28] Daniel Le Métayer. Describing software architecture styles using graph grammars. Software Engineering,
IEEE Transactions on, 24(7):521–533, 1998.

[29] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. ACM SIGSOFT Software
Engineering Notes, 21(6):3–14, 1996.

[30] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph Sifakis. Architecture diagrams:
A graphical language for architecture style specification. In Proceedings of the 9th Interaction and
Concurrency Experience (ICE), pages 83–97, August 2016.

[31] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph Sifakis. Configuration logics: Mod-
eling architecture styles. Journal of Logical and Algebraic Methods in Programming, 86(1):2–29, 2017.

[32] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Information and
computation, 100(1):1–40, 1992.

[33] George A. Papadopoulos and Farhad Arbab. Configuration and dynamic reconfiguration of components
using the coordination paradigm. Future Generation Computer Systems, 17(8):1023–1038, 2001.

A Complete glue specification of the modular phone case study

The glue specification must be provided in an XML file. Each constraint has two parts: effect and causes.
The former defines the port to which the constraint is associated—intuitively, the effect is the firing of
a transition labeled by this port. The latter lists the ports that are necessary to “cause” the “effect”.
For the require constraints, all causes must be present; for the accept constraints, any (possibly empty)
combination of the causes is accepted. require constraints have a set of options for causes, i.e., the OR-
causes explained in Subsection 3.3.

<?xml version="1.0" encoding="UTF -8"?>
<glue>

<accepts >
<accept >

<effect id="sndToDri" specType="Log_Protocol_Controller"/>
<causes >

<port id="rcvRes" specType="Log_Handler"/>
</causes >

</accept >
<accept >

<effect id="rcvFromDri" specType="Log_Protocol_Controller"/>
<causes >

<port id="send_log" specType="Log_Handler"/>
</causes >

</accept >
<accept >

<effect id="send" specType="Log_Protocol_Controller"/>

22

<causes >
<port id="add" specType="AP_ReceiverFifo"/>

</causes >
</accept >
<accept >

<effect id="rcvDriver" specType="Log_Protocol_Controller"/>
<causes >

<port id="send_log" specType="Log_Handler"/>
</causes >

</accept >
<accept >

<effect id="receive" specType="Log_Protocol_Controller"/>
<causes >

<port id="sndToController" specType="/f/e/Z"/>
</causes >

</accept >
<accept >

<effect id="add" specType="AP_ReceiverFifo"/>
<causes >

<port id="send" specType="Control_Protocol_Controller"/>
<port id="send" specType="Camera_Protocol_Controller"/>
<port id="send" specType="Log_Protocol_Controller"/>
<port id="send" specType="Power_Supply_Protocol_Controller"/>

</causes >
</accept >
<accept >

<effect id="rm" specType="AP_ReceiverFifo"/>
<causes >

<port id="receive" specType="AP_MessageWorker"/>
</causes >

</accept >
<accept >

<effect id="sndRes" specType="AP_MessageWorker"/>
<causes >

<port id="getReq" specType="/f/e/Z"/>
</causes >

</accept >
<accept >

<effect id="receive" specType="AP_MessageWorker"/>
<causes >

<port id="rm" specType="AP_ReceiverFifo"/>
</causes >

</accept >
<accept >

<effect id="sndReq" specType="AP_MessageWorker"/>
<causes >

<port id="getRes" specType="AP_ResponseWorker"/>
</causes >

</accept >
<accept >

<effect id="sndToController" specType="AP_RequestWorker"/>
<causes >

<port id="receive" specType="Control_Protocol_Controller"/>
<port id="receive" specType="Log_Protocol_Controller"/>
<port id="receive" specType="Power_Supply_Protocol_Controller"/>
<port id="receive" specType="Camera_Protocol_Controller"/>

</causes >
</accept >
<accept >

<effect id="getReq" specType="AP_RequestWorker"/>
<causes >

<port id="sndRes" specType="AP_MessageWorker"/>
</causes >

</accept >
<accept >

<effect id="getRes" specType="AP_ResponseWorker"/>
<causes >

<port id="sndReq" specType="AP_MessageWorker"/>
</causes >

</accept >

23

<accept >
<effect id="sndToDri" specType="Control_Protocol_Controller"/>
<causes >

<port id="rcvReq" specType="Control_Disconnect_Handler"/>
<port id="rcvReq" specType="Control_Connect_Handler"/>

</causes >
</accept >
<accept >

<effect id="rcvFromDri" specType="Control_Protocol_Controller"/>
<causes >

<port id="sndRes" specType="Control_Connect_Handler"/>
<port id="sndRes" specType="Control_Disconnect_Handler"/>

</causes >
</accept >
<accept >

<effect id="send" specType="Control_Protocol_Controller"/>
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</accept >
<accept >

<effect id="rcvDriver" specType="Control_Protocol_Controller"/>
<causes >

<port id="sndRes" specType="Control_Connect_Handler"/>
<port id="sndRes" specType="Control_Disconnect_Handler"/>

</causes >
</accept >
<accept >

<effect id="receive" specType="Control_Protocol_Controller"/>
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</accept >
<accept >

<effect id="sndToDri" specType="Power_Supply_Protocol_Controller"/>
<causes >

<port id="rcvReq" specType="Power_Supply_Handler"/>
</causes >

</accept >
<accept >

<effect id="rcvFromDri" specType="Power_Supply_Protocol_Controller"/>
<causes >

<port id="sndRes" specType="Power_Supply_Handler"/>
</causes >

</accept >
<accept >

<effect id="send" specType="Power_Supply_Protocol_Controller"/>
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</accept >
<accept >

<effect id="rcvDriver" specType="Power_Supply_Protocol_Controller"/>
<causes >

<port id="sndRes" specType="Power_Supply_Handler"/>
</causes >

</accept >
<accept >

<effect id="receive" specType="Power_Supply_Protocol_Controller"/>
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</accept >
<accept >

<effect id="sndToDri" specType="Camera_Protocol_Controller"/>
<causes >

<port id="rcvReq" specType="Camera_Stream_Handler"/>
<port id="rcvReq" specType="Camera_Capture_Handler"/>

</causes >
</accept >

24

<accept >
<effect id="rcvFromDri" specType="Camera_Protocol_Controller"/>
<causes >

<port id="sndRes" specType="Camera_Capture_Handler"/>
<port id="sndRes" specType="Camera_Stream_Handler"/>

</causes >
</accept >
<accept >

<effect id="send" specType="Camera_Protocol_Controller"/>
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</accept >
<accept >

<effect id="rcvDriver" specType="Camera_Protocol_Controller"/>
<causes >

<port id="sndRes" specType="Camera_Capture_Handler"/>
<port id="sndRes" specType="Camera_Stream_Handler"/>

</causes >
</accept >
<accept >

<effect id="receive" specType="Camera_Protocol_Controller"/>
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</accept >
<accept >

<effect id="rcvReq" specType="Power_Supply_Handler"/>
<causes >

<port id="sndToDri" specType="Power_Supply_Protocol_Controller"/>
</causes >

</accept >
<accept >

<effect id="sndRes" specType="Power_Supply_Handler"/>
<causes >

<port id="rcvDriver" specType="Power_Supply_Protocol_Controller"/>
<port id="rcvFromDri" specType="Power_Supply_Protocol_Controller"/>

</causes >
</accept >
<accept >

<effect id="rcvRes" specType="Log_Handler"/>
<causes >

<port id="sndToDri" specType="Log_Protocol_Controller"/>
</causes >

</accept >
<accept >

<effect id="send_log" specType="Log_Handler"/>
<causes >

<port id="rcvDriver" specType="Log_Protocol_Controller"/>
<port id="rcvFromDri" specType="Log_Protocol_Controller"/>

</causes >
</accept >
<accept >

<effect id="rcvReq" specType="Control_Connect_Handler"/>
<causes >

<port id="sndToDri" specType="Control_Protocol_Controller"/>
</causes >

</accept >
<accept >

<effect id="sndRes" specType="Control_Connect_Handler"/>
<causes >

<port id="rcvFromDri" specType="Control_Protocol_Controller"/>
</causes >

</accept >
<accept >

<effect id="rcvReq" specType="Camera_Stream_Handler"/>
<causes >

<port id="sndToDri" specType="Camera_Protocol_Controller"/>
</causes >

</accept >

25

<accept >
<effect id="sndRes" specType="Camera_Stream_Handler"/>
<causes >

<port id="rcvDriver" specType="Camera_Protocol_Controller"/>
<port id="rcvFromDri" specType="Camera_Protocol_Controller"/>

</causes >
</accept >
<accept >

<effect id="rcvReq" specType="Control_Disconnect_Handler"/>
<causes >

<port id="sndToDri" specType="Control_Protocol_Controller"/>
</causes >

</accept >
<accept >

<effect id="sndRes" specType="Control_Disconnect_Handler"/>
<causes >

<port id="rcvDriver" specType="Control_Protocol_Controller"/>
<port id="rcvFromDri" specType="Control_Protocol_Controller"/>

</causes >
</accept >
<accept >

<effect id="rcvReq" specType="Camera_Capture_Handler"/>
<causes >

<port id="sndToDri" specType="Camera_Protocol_Controller"/>
</causes >

</accept >
<accept >

<effect id="sndRes" specType="Camera_Capture_Handler"/>
<causes >

<port id="rcvDriver" specType="Camera_Protocol_Controller"/>
<port id="rcvFromDri" specType="Camera_Protocol_Controller"/>

</causes >
</accept >

</accepts >
<requires >

<require >
<effect id="sndToDri" specType="Log_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="rcvRes" specType="Log_Handler"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvFromDri" specType="Log_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="send_log" specType="Log_Handler"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="send" specType="Log_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvDriver" specType="Log_Protocol_Controller"/>
<causes >

<option >
<causes >

26

<port id="send_log" specType="Log_Handler"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="receive" specType="Log_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="add" specType="AP_ReceiverFifo"/>
<causes >

<option >
<causes >

<port id="send" specType="Control_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="send" specType="Camera_Protocol_Controller"/>

</causes >
</option >
<option >

<causes >
<port id="send" specType="Log_Protocol_Controller"/>

</causes >
</option >
<option >

<causes >
<port id="send" specType="Power_Supply_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="rm" specType="AP_ReceiverFifo"/>
<causes >

<option >
<causes >

<port id="receive" specType="AP_MessageWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndRes" specType="AP_MessageWorker"/>
<causes >

<option >
<causes >

<port id="getReq" specType="AP_RequestWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="receive" specType="AP_MessageWorker"/>
<causes >

<option >
<causes >

<port id="rm" specType="AP_ReceiverFifo"/>
</causes >

</option >
</causes >

</require >

27

<require >
<effect id="sndReq" specType="AP_MessageWorker"/>
<causes >

<option >
<causes >

<port id="getRes" specType="AP_ResponseWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndToController" specType="AP_RequestWorker"/>
<causes >

<option >
<causes >

<port id="receive" specType="Control_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="receive" specType="Log_Protocol_Controller"/>

</causes >
</option >
<option >

<causes >
<port id="receive" specType="Power_Supply_Protocol_Controller"/>

</causes >
</option >
<option >

<causes >
<port id="receive" specType="Camera_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="getReq" specType="AP_RequestWorker"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="AP_MessageWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="getRes" specType="AP_ResponseWorker"/>
<causes >

<option >
<causes >

<port id="sndReq" specType="AP_MessageWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndToDri" specType="Control_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="rcvReq" specType="Control_Disconnect_Handler"/>
</causes >

</option >
<option >

<causes >
<port id="rcvReq" specType="Control_Connect_Handler"/>

</causes >
</option >

</causes >
</require >

28

<require >
<effect id="rcvFromDri" specType="Control_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="Control_Connect_Handler"/>
</causes >

</option >
<option >

<causes >
<port id="sndRes" specType="Control_Disconnect_Handler"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="send" specType="Control_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvDriver" specType="Control_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="Control_Connect_Handler"/>
</causes >

</option >
<option >

<causes >
<port id="sndRes" specType="Control_Disconnect_Handler"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="receive" specType="Control_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndToDri" specType="Power_Supply_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="rcvReq" specType="Power_Supply_Handler"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvFromDri" specType="Power_Supply_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="Power_Supply_Handler"/>
<port id="sndRes" specType="Power_Supply_Handler"/>

</causes >
</option >

</causes >

29

</require >
<require >

<effect id="send" specType="Power_Supply_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvDriver" specType="Power_Supply_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="Power_Supply_Handler"/>
<port id="sndRes" specType="Power_Supply_Handler"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="receive" specType="Power_Supply_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndToDri" specType="Camera_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="rcvReq" specType="Camera_Stream_Handler"/>
</causes >

</option >
<option >

<causes >
<port id="rcvReq" specType="Camera_Capture_Handler"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="rcvFromDri" specType="Camera_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="Camera_Capture_Handler"/>
</causes >

</option >
<option >

<causes >
<port id="sndRes" specType="Camera_Stream_Handler"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="send" specType="Camera_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="add" specType="AP_ReceiverFifo"/>
</causes >

</option >

30

</causes >
</require >
<require >

<effect id="rcvDriver" specType="Camera_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndRes" specType="Camera_Capture_Handler"/>
</causes >

</option >
<option >

<causes >
<port id="sndRes" specType="Camera_Stream_Handler"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="receive" specType="Camera_Protocol_Controller"/>
<causes >

<option >
<causes >

<port id="sndToController" specType="AP_RequestWorker"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvReq" specType="Power_Supply_Handler"/>
<causes >

<option >
<causes >

<port id="sndToDri" specType="Power_Supply_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndRes" specType="Power_Supply_Handler"/>
<causes >

<option >
<causes >

<port id="rcvDriver" specType="Power_Supply_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="rcvFromDri" specType="Power_Supply_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="rcvRes" specType="Log_Handler"/>
<causes >

<option >
<causes >

<port id="sndToDri" specType="Log_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="send_log" specType="Log_Handler"/>
<causes >

<option >
<causes >

<port id="rcvDriver" specType="Log_Protocol_Controller"/>
</causes >

</option >

31

<option >
<causes >

<port id="rcvFromDri" specType="Log_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="rcvReq" specType="Control_Connect_Handler"/>
<causes >

<option >
<causes >

<port id="sndToDri" specType="Control_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndRes" specType="Control_Connect_Handler"/>
<causes >

<option >
<causes >

<port id="rcvFromDri" specType="Control_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="rcvFromDri" specType="Control_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="rcvReq" specType="Camera_Stream_Handler"/>
<causes >

<option >
<causes >

<port id="sndToDri" specType="Camera_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndRes" specType="Camera_Stream_Handler"/>
<causes >

<option >
<causes >

<port id="rcvDriver" specType="Camera_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="rcvFromDri" specType="Camera_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="rcvReq" specType="Control_Disconnect_Handler"/>
<causes >

<option >
<causes >

<port id="sndToDri" specType="Control_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndRes" specType="Control_Disconnect_Handler"/>
<causes >

32

<option >
<causes >

<port id="rcvDriver" specType="Control_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="rcvFromDri" specType="Control_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >
<require >

<effect id="rcvReq" specType="Camera_Capture_Handler"/>
<causes >

<option >
<causes >

<port id="sndToDri" specType="Camera_Protocol_Controller"/>
</causes >

</option >
</causes >

</require >
<require >

<effect id="sndRes" specType="Camera_Capture_Handler"/>
<causes >

<option >
<causes >

<port id="rcvDriver" specType="Camera_Protocol_Controller"/>
</causes >

</option >
<option >

<causes >
<port id="rcvFromDri" specType="Camera_Protocol_Controller"/>

</causes >
</option >

</causes >
</require >

</requires >
</glue>

33

	1 Introduction
	2 The JavaBIP Framework
	3 Motivating Case Study
	3.1 Componentization and Interaction Model

	4 Interaction Logic and Macro-notation
	4.1 Propositional Interaction Logic
	4.2 First-order Interaction Logic
	4.3 JavaBIP Require/Accept Macro-notation Based on FOIL
	4.3.1 The Require Macro
	4.3.2 The Accept Macro

	5 Defining System Validity
	6 Implementation
	6.1 Performance Results

	7 Related Work
	8 Conclusion and Future Work
	Appendix A Complete glue specification of the modular phone case study

