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Abstract. In container management systems, such as Kubernetes, the
scheduler has to place containers in physical machines and it should be
aware of the degradation in performance caused by placing together con-
tainers that are barely isolated. We propose that clients provide a char-
acterization of their applications to allow a scheduler to evaluate what
is the best configuration to deal with the workload at a given moment.
The default Kubernetes Scheduler only takes into account the sum of
requested resources in each machine, which is insufficient to deal with
the performance degradation. In this paper, we show how specifying re-
source limits is not enough to avoid resource contention, and we propose
the architecture of a scheduler, based on the client application charac-
terization, to avoid the resource contention.

Keywords: Containers · Scheduling · Resource contention · Resource
Management.

1 Introduction

With the advent of the cloud computing paradigm and the emergence of its
technologies, computational power can be adjusted on demand to the process-
ing needs of applications. Developers can currently choose among a number of
cloud computational resources such as virtual machines (VMs), containers, or
bare-metal resources, having each their own characteristics. A VM can be seen
as a piece of software that emulates a hardware computing system and typically
multiple VMs share the same hardware to be executed. Nevertheless, VM uti-
lization can sometimes be difficult to achieve, e.g. when the applications to be
run do not consume all the resources of a VM.

Containers are rapidly replacing Virtual Machines (VM) as virtual encapsu-
lation technology to share physical machines [8, 19, 16, 20]. The advantages over



VMs are a much faster launching and termination time overheads, and an im-
proved utilization of computing resources. Indeed, the process management ori-
gin of container-based systems allows users to adjust resources in a fine-grained
fashion more closely with the granularity of many applications enabling single
or groups of containers to be deployed on-demand [4]. Finally, container-based
platforms, such as Kubernetes, also provide automating deployment and scaling
of containerized applications, simplifying the scaling of elastic applications.

Nevertheless, as happened with VMs, containers also exhibit resource con-
tention, which leads to unexpected performance degradation. In general terms,
resource contention arises when the computing demand from the applications
being executed exceeds the overall computing power of the shared host machine.
In particular, resource contention appears in containers, when the demand of
multiple containers in the same host machine exceeds the supply, understood in
terms of CPU, memory, disk or network. This phenomenon can happen in spite of
the isolation mechanisms integrated with container technologies, namely Linux
namespaces and Linux Control Groups, which isolate the view of the system
and limit the amount of computational resources, respectively. Therefore, the
development of applications on these platforms requires new research on schedul-
ing and resource management algorithms that reduces resource contention while
maximizes resource utilization. Existing platforms like Kubernetes already incor-
porate a reservation mechanism in order to reduce resource contention. However,
such mechanism is only for CPU and for the maximum amount of memory, and
can decrease resource utilization.

In this paper, we propose a client-side scheduling approach in Kubernetes
that aims at reducing the resource contention phenomenon in container tech-
nologies. Our approach makes use of application characterization in terms of the
usage of resources, and extends the Kubernetes scheduler so that it can take
better allocation decisions on containers based on such characterization. Our
application characterization consists of dividing applications in two categories,
namely high and low usage of resources and then, in this early stage work, we
delegate the classification process of applications to the client or developer: He
or she needs to provide the category which fits better into his / her application.
Then, we extend the Kubernetes scheduler behaviour, in essence, we try to avoid
that containers wrapping applications with high usage of a resource (i.e. CPU
or disk) coincide in the same host machine. Finally, we conducted experiments
with real-world applications, such as WordCount and PageRank, in operational
stream processing frameworks, such as Thrill [6] and Flink [3], and compared
the results with the standard Kubernetes scheduler.

The rest of this paper is structured as follows. In Section 2 a brief overview
of related work is presented. Section 3 describes basic technological aspects of
Docker and Kubernetes, and Section 4 shows the effects of resource contention.
Section 5 presents our proposed architecture to deal with interference, and shows
how an application characterization can help the scheduler to improve overall
performance. Finally, our paper ends with conclusions and future work in Sec-
tion 6.



2 Related work

Container scheduling in cloud environments is an emergent research topic. Google
has developed and used several schedulers for large scale infrastructures over past
years based on a centralized architecture [21, 5]. They are oriented for internal
global use or as a global service provider. Some works have been proposed to
improve the algorithms available as a standard in practical cloud infrastructures,
such as Kubernetes3, Mesos4[10] and Docker Swarm5. However, in [7], the au-
thors point out the lack of works about resource management with containers,
and they propose a scheduling framework that provides useful management func-
tions that can be used to apply customized scheduling policies, mainly, in local
environments. We can find few more works that complements to our approach:
In [9], the authors propose a generational scheduler to map containers to different
generations of servers, based on the requirements and properties learned from
running containers. It shows an improved energy efficiency over Docker Swarm
built-in scheduling policies. The work in [11] uses an ant colony meta-heuristic
to improve application performance, also over Docker Swarm base scheduling
policies. In constrast, in our paper, we consider both, resource utilization and
application performance.The authors in [2] address the problem of scheduling
micro-services across multiple VM clouds to reduce overall turnaround time
and total traffic generated. Finally, in [1], the authors introduce a container
management service which offers an intelligent resource scheduling that increase
deployment density, scalability and resource efficiency. It considers an holistic
view of all registered applications and available resources in the cloud. The main
difference from our approach is that we focus on the client side requirements to
optimize a subset of applications and resources.

Outside the container technologies, similar approaches exist. For instance,
CASH [12] is a Context Aware Scheduler for Hadoop. It takes into account the
heterogeneity of the computational resources of a Hadoop cluster as well as the
job characteristics, whether they are cpu or I/O intensive. In [17], the authors
use k-means as a classification mechanism for Hadoop workloads (jobs), so that
jobs can be automatically classified based on their requirements. They plan to
improve the performance of their scheduler by separating data intensive and
computation intensive jobs in performing the classification. On the other hand,
job interference was also studied in Hadoop, and acknowledged as one of the key
performance aspects. In [23], the authors analyse the high level of interference
between interactive and batch processing jobs and they propose a scheduler for
the virtualization layer, designed to minimize interference, and a scheduler for
the Hadoop framework. Similarly, the authors in [22] analyse the interference
occurring among Apache Spark jobs in virtualized environments. They develop
an analytical model to estimate the interference effect, which could be exploited
for improving the Apache Spark Scheduler in the future.

3 http://kubernetes.io/
4 http://mesos.apache.org/
5 https://docs.docker.com/swarm/,https://github.com/docker/swarmkit
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Fig. 1: Kubernetes architecture.

3 Kubernetes architecture

Kubernetes is a platform to facilitate the deployment and management of con-
tainerized applications abstracting away from the underlaying infrastructure6.
The system is composed of the Kubernetes Control plane, i.e. the master node
and any number of worker nodes that execute the deployed applications. Appli-
cations are submitted to the control plane, which deploys them automatically
across the worker nodes. Components of the control plane can reside on a single
master node, or can be split across multiple nodes. The components of the con-
trol plane are: 1) The API server, implemented with a RESTful interface, which
gives an entry point to the cluster. The API service is used as a proxy to expose
the services which are executed inside the cluster to external clients. 2) The
Scheduler that assigns a worker node to each component of your application. 3)
etcd, a key-value distributed storage system, used to coordinate resources and
to share configuration data of the cluster. And 4) The Controller manager, a
process that combines and coordinates several controllers such as the replication
controller, the node controller, the namespace or the deployment controller.

Each worker, which runs containerized applications, has the following com-
ponents: 1) Docker, or any other container runtime. 2) The kubelet service that
communicates with the master and the containers on the node. 3) Kube-proxy
that balances client request across all containers that configure a service. The
basic components considered on this paper are shown in Figure 1. For a more de-
tailed description of the chain of events triggered when a pod is created see [13].

The deployment unit in Kubernetes is a pod, an abstraction of a set of con-
tainers tightly coupled with some shared resources (the network interface and

6 https://kubernetes.io/



the storage system). Each pod, and all its containers, are executed on one allo-
cated machine, and has a IP address that is shared by all containers. Therefore,
two services listening on the same port cannot be deployed in a pod.

Developers can specify pod resource requests and limits. A pod resource
request is the minimum amount of resources needed by all containers in the pod,
and the pod resource limits is the maximum resources allocated to the containers
in a pod. Once the pod is running on a node, it consumes as much CPU time as it
can. CPU time is distributed between pods running on the pod in the same ratio
than the pod request specifications. CPU is considered a compressible resource,
which means that is acceptable a performance degradation due to a CPU resource
contention. However, memory is incompressible, and it is not admissible for a
pod to be running if it has not enough memory as requested. Consequently,
developers should limit the amount of memory a container can consume.

The Kubernetes scheduler allocates pods into nodes taking into account fac-
tors that have a significant impact on the availability, performance and capacity
– e.g. the cluster topology, individual and collective resources, service quality
requirements, hardware and software restrictions, policies, etc. The scheduler
uses request and limits to filter the nodes that have enough resources to exe-
cute a pod, and from them, it chooses the best one. Pods can be categorise in
three Quality of Service (QoS) classes: Best effort(lowest priority), Burstable,
and Guaranteed (highest priority). The QoS classes is inferred from the request
and limits manifests. A Guaranteed pod has all containers with limits equal to
requests; a Best effort pod has not request or limit manifest for any container;
and the rest of pods are Burstable. Once a pod is deployed in a node, if pod
request manifest < pod request limits resource requested are guaranteed by the
scheduler, but it is possible to use resources beyond the request manifest if they
are idle resources.

4 Resource Contention on Kubernetes

When several containers are running on the same machine, they compete for
the available resources. As the container abstraction provides less isolation than
virtual machines, sharing physical resources might lead to a degradation in the
performance of the applications running inside the containers.

To avoid this situation, Kubernetes provides a resource reservation mech-
anism. That mechanism has two main restrictions. The first one is that the
reservation is only for CPU and for the maximum amount of RAM . However,
the resources that are shared in a machine which might degrade the performance
are not restricted to those ones. For instance, the network bandwidth is shared
among all containers in the same machine, and the network access is shared
for all containers inside a pod [15]. Other shared resource is the memory band-
width. The second issue is that a reservation mechanism can lead to unused
resources in the cluster. An application might reserve an entire core – CPU limit
in Kubernetes terminology – but it only uses the resource sporadically.



Table 1: Reference applications used as a background workload with the re-
source which they use intensively and with the chosen execution parameters.

Application Resource Notes

Pov-ray CPU Version 3.7 with default paralelism

STREAM [14] Memory Bandwidth
-DSTREAM ARRAY SIZE=100000000
-DNTIMES=100

dd Disk I/O Bandwidth
dd if=/dev/zero of=/root/testfile
bs=1G count=1 oflag=direct > dev/null

We executed several applications on the same machine to characterise how
the performance degrades. The machine has two E6750 cores and 8GB of RAM.
The chosen applications are a map-reduce application, WordCount, and a we-
bgraph application, PageRank [18], expecting that PageRank makes a higher
usage of CPU than WordCount. Additionally, we ran both applications inside
two different frameworks for data stream processing: Flink [6] and Thrill [3]. We
chose both of them because they are implemented in different programming lan-
guages – Flink is implemented in Java, whereas Thrill is implemented in C++.
We ran each experiment ten times, and we plotted their mean values.

The first set of experiments consists in running one application per exper-
iment – WordCount inside Flink, WordCount inside Thrill, PageRank inside
Flink and PageRank inside Thrill – along with a background execution caused
by another application which makes an intensive usage of a certain resource: a
ray tracing program, Pov-ray 7, the STREAM benchmark [14], and a file transfer
and conversion Unix command, dd 8, are used as workload background applica-
tions. These three applications were executed in a continuous loop. A summary
of the parameters used, their version, as well as the resource they use intensively
is depicted in Table 1.

For the experiments, we ran WordCound and PageRank and varied the input
size in order to observe how their performance degrades for long executions. For
PageRank applications, we selected the Barabasi-Albert graph which was gener-
ated using the NetworkX package 9. As a reference time, we take the execution
time of each application in isolation, without the background application, App0.
Given the execution time of that application with a certain background work-
load, for instance Apppv, we calculate the performance degradation as

Apppv

App0
.

Results are shown in Figure 2. We can see that: (i) the implementation of Thrill
is much more efficient than Flink in all cases; (ii) there is a significant perfor-
mance degradation when we execute WordCount in all cases for big input sizes
– 1 thousand million –, which is caused when dd is very high (about four times).
The explanation is that the size of the input is 6.76 GB, so there are a lot of
page faults in the execution and the application is continuously accessing to

7 Persistence of vision raytracer (version 3.7) [computer software], http://www.

povray.org/download/
8 dd(1) linux users manual (2010)
9 https://networkx.github.io/
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Fig. 2: Performance degradation for several Apps – WordCount inside Flink,
WordCount inside Thrill, PageRank inside Flink and PageRank inside Thrill –
with a background workload.

the storage system. (iii) Finally, there is also a significant performance anomaly
when executing WordCount and Flink and dd for small input sizes. This is due
to internal implementation of Flink regarding I/O access, as for such small input
sizes the computational times are reduced in comparison with the overheads for
accessing disk.

In the second set of experiments, we have measured the degradation caused in
real scenarios. We execute on the same physical machine the following scenarios
for each application – WordCount and PageRank–: i) one instance of Flink –
Thrill–; two instances of Flink –Thrill– and four instances of Flink –Thrill. ii)
one instance of Flink + one instance of Thrill; two instances of Flink + two
instances of Thrill. Results are shown in Figure 3. We can observe that in Flink,
the degradation is similar when there is another Flink or Thrill application.
When there are four applications, the performance is degraded in a high degree
with Flink applications in WordCount example. The results are very similar in
Thrill experiments.

In general, we can see that the degradation is higher when two or more
instances of the same container are scheduled in the same machine. The reason
for this behaviour is that both applications make use of the same resources at
the same time, so the contention is higher.
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Fig. 3: Performance degradation for several Apps – WordCount inside Flink,
WordCount inside Thrill, PageRank inside Flink and PageRank inside Thrill –
when executed in different configurations.

5 Client-side Scheduling

As we presented in Section 3, pods are allocated into machines by Kubernetes
Scheduler. Kubernetes provides a label mechanism, which allows it to place the
pods in machines which satisfy certain conditions. For example, the application
can request a machine with a solid disk. However, the client should know which
kind of labels the cluster provides. This mechanism is insufficient to deal with the
problem presented in Section 4. In this section, we introduce a methodology to
characterize applications in an informal way. The implemented client-side sched-
uler uses the characterization as a guideline to allocate pods inside machines.

5.1 Application Characterization

In certain cases, applications can be classified depending on which resource they
use more intensively – CPU, I/O disk, network bandwidth, or memory band-
width. An application which is writing in disk continuously has a different be-
haviour from another one which makes an intensive use of CPU. For the lack of
space, in this paper, we only consider applications that make an intensive use of
CPU or an intensive use of I/O disk. In our previous experiments, pov-ray was
the application which exemplifies a high CPU application and the dd command
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App Input Size Id Categoŕıa
FlinkWC 1 · 106 1 cpu ↑
FlinkWC 20 · 106 2 cpu ↑
FlinkWC 100 · 106 3 cpu ↑
FlinkWC 1000 · 106 4 disk ↑
ThrillWC 1 · 106 5 cpu ↓
ThrillWC 20 · 106 6 cpu ↑
ThrillWC 100 · 106 7 cpu ↑
ThrillWC 1000 · 106 8 disk ↑
FlinkPR 1000 9 disk ↑
FlinkPR 10000 10 disk ↑
FlinkPR 100000 11 cpu ↑
FlinkPR 334863 12 disk ↓
FlinkPR 1 · 106 13 cpu ↑
ThrillPR 1000 14 cpu ↓
ThrillPR 10000 15 cpu ↑
ThrillPR 100000 16 cpu ↓
ThrillPR 334863 17 cpu ↑
ThrillPR 1 · 106 18 cpu ↓

(b) Application Identification and
Characterization.

Fig. 4: Application characterization based on the CPU degradation and the I/O
degradation. Numbers in Subfigure 4a are application identifiers in Table 4b.

exemplifies a high I/O disk utilisation. Real applications might have an intensive
usage of a resource, but with different degrees. For example, the bzip applica-
tion, used to compress large files, has an I/O intensive behaviour that is less
than the usage made by the dd example. This behaviour can be modelled which
the definition of several intensity usage grades. For the sake of simplicity and as
we want to propose a general methodology, we are going to use here only two
grades of resource usage, a high usage of the resource – with a ↑ notation – and
a low usage of the resource – with a ↓ notation. Nevertheless, we acknowledge
that the number of grades is a determinant aspect for the scheduling perfor-
mance that needs to be addressed, and there is a number of approaches in the
literature that can be exploited for better determining it, such as classification
and clusterization data mining algorithms.

Therefore, in our approach, we have a total of four categories: High cpu util-
isation (cpu ↑), low cpu usage (cpu ↓), high I/O disk usage (disk ↑), and low
I/O disk usage (disk ↓). The characterization of an application in one of these
categories is going to allow the scheduler to take better allocation decisions. As
the simplest method, the client or the developer should provide the category
which better fits better his / her application. Although the categories are very
intuitive, alternative sophisticated methods can be developed to classify applica-
tions automatically. In order to illustrate our methodology, in Figure 4, we show
a possible characterization. We have plotted the I/O degradation – the num-
ber of times the application is slower when it is scheduled in the same machine
along with dd– vs the CPU degradation – the same procedure using pov-ray.
We used dd and pov-ray as benchmarking applications, however, other appli-
cations which make a high usage of a single resource can be used. The values
were taken from the experiments shown in Figure 2. The red lines split the four
categories, and they were obtained with qualitative criteria. Then, we classified



Algorithm 1 Client-Side Scheduler

1: procedure Client-Side Scheduler(lapp,W )
2: S = GetClusterState()
3: minV alue :=∞
4: bestNode := 0
5: for N in S do
6: if |N | ≤ min{|M |, ∀M ∈ S}) then

7: if minV alue >
∑|N|

j wj,app then

8: minV alue :=
∑|N|

j wj,app

9: bestNode := N
10: end if
11: end if
12: end for
13: Allocate(lapp, bestNode)
14: end procedure

Table 2: Example weight matrix W for two resources and two usage grades.
App1 \App2 cpu ↑ cpu ↓ disk ↑ disk ↓

cpu ↑ 5 4 2 1

cpu ↓ 4 3 1 0

disk ↑ 2 1 5 4

disk ↓ 1 0 4 3

each application taking as criteria the resource which caused more contention.
The plotted numbers are the identifier of the corresponding application, which
are shown in Table 4b.

5.2 Client-Side scheduling

We propose a scheduler design which has two criteria: i) Balancing the number
of applications in each node; ii) minimising the degradation in a machine caused
by the resource competition. Formally, let us define a node N as a multi-set of
labels. Each label represents an application that is running inside that node. In
our example, we have four kind of labels – l0 equivalents to cpu ↑; l1 equivalents
to cpu ↓, and so on. In a certain moment, the state of the cluster S can be
modelled as a set of nodes. Given a new application whose label is lapp, the best
node to allocate lapp is given by:

|E|
argmin

i∈0

∑
j

wEi,j ,app

where wk,l is the weight of the k-th row and l-th column of a weight matrix
W . Each wk,l models the penalty to schedule a new application labelled as l, if
in that node is running an application labelled as k. Ei,j is the j-th application
label of i-th node in E set. E is defined as E = {N ∈ S ∧ ∀M ∈ S, |N | ≤ |M |}.
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Fig. 5: Execution time and machine allocation with the default Kubernetes
scheduler. The blue line shows the total measured time (Execution time + time
to create pods + time to delete pods).

The E set contains the nodes with less applications. Algorithm 1 implements
the previous formalisation.

In order to obtain the weight matrix W , we provide the following rules: For
each element wk,l, we observe if the labels are associated with the same resource.
If that is the case, then we set high values of penalty: 3, 4, or 5. Then, we observe
the grade of usage. From the previous values, if both grades are high we set the
highest penalty value (5); if only one is high, then we associate the medium
value (4), and if both are low, then the lowest penalty value is set (3). In case
the labels are not associated with the same resource, we repeat the same process
to associate the low values (0, 1, or 2) if i and j correspond to different resources.
From the experiments made in Section 4, we can build a weight matrix W , as
depicted in Table 2.

5.3 Experiments

We made some experiments to compare our client-side scheduler with the de-
fault Kubernetes scheduler. The proposed scheduler was implemented in Python.
The experiments were run in a Kubernetes cluster with 8 machines (each ma-
chine has four i5-4690 cores and 8 GB of RAM). One of the machines acts as a
dedicated Master Node. In the proposed scenario, we ran six applications three
times – dd and pov-ray with parameters from Table 1; PageRank in Thrill and
Flink with 1 million nodes and WordCount in Thrill and Flink with 1,000 mil-
lion words– with the default Kubernetes scheduler. The scenario was executed
ten times. As the Kubernetes scheduler has a non-deterministic behaviour, we
show three reference cases in Figure 5. Each bar represents the execution time
of the application, and its colour indicates the machine where the scheduler
placed the application. The vertical line shows the total time measured for the
experiment (time to create the pods plus execution time plus time to delete the
pods). Case number 1 represents the worst case. Kubernetes allocated WCFlink1

and WCFlink2 in the same machine, with an execution of dd and PRFlink1. As
a result, the execution time of WCFlink1 is more than 10 minutes, due to the
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Fig. 6: Execution time and machine allocation with the proposed scheduler. The
blue line shows the total measured time (Execution time + time to create pods
+ time to delete pods).

degradation caused by sharing the machine with WCFlink2. Case number 2 rep-
resents a balanced case, with an execution time about 10 minutes. The Scheduler
placed again WCFlink3 and WCFlink2 in the same, so there is certain degrada-
tion in the performance. The best case corresponds to Case 3. In this situation,
Kubernetes allocated WCFlink1, WCFlink2, WCFlink3 in different machines and
the result is better (about eight minutes). From these experiments, we can con-
clude that, as Kubernetes has a non-deterministic behaviour, the execution time
of the applications has a high variance. If the scheduler splits the applications
with an intensive CPU usage along different machines, the results are better;
however the decision is taken randomly. Additionally, we can see in Case 2 that
the default Scheduler does not try to balance the number of applications along
the number of machines – the scheduler places four applications in node3 and
only one application in node5.

The results of the same experiment with our scheduler are shown in Figure
6. Its behaviour is deterministic, so under the same conditions, the scheduler
allocates the applications in the same machine – in the figure we only show two
of the ten executions, due to the low variance. The overall execution time of the
experiment is about eight minutes. This value is 20% better than the mean time
of the Kubernetes scheduler –about 10 minutes–, and it is significantly better
–33%– than the worst case – about 12 minutes –. The total time is similar to the
best case of the default scheduler. Additionally, the variance in the execution
time is lower. The improvement is achieved splitting the application with a high
CPU utilisation –WCFlink1, WCFLink2, and WCFlink3– in different machines.

In our last set of experiments, we executed the same batch of applications us-
ing the reservation mechanism available in Kubernetes. As WCFlink1, WCFlink2,
WCFlink3 have the highest execution time, we reserved two cores for them. For
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Fig. 7: Execution time and machine allocation with CPU limit mechanism.
WCFlink1, WCFlink2, WCFlink3 are executed with two cores and the rest ap-
plication with one core. The blue line shows the total time obtained with the
proposed scheduler and the red line shows the total measured time (Execution
time + time to create pods + time to delete pods).

the rest applications, we reserved only one core. The results are displayed in
Figure 7. The red line compares the total time with our scheduler with the blue
line. We can see that the total time is almost twice. The reason for this be-
haviour is that there are a lot of unused resources in the machines. Additionally,
the variance of the execution time is very high – for instance, pov-ray1 has an
execution time about 12 minutes and pov-ray2 has an execution time about 16
minutes–. It can be explained due to the fact that there are other resources that
cause performance degradation which are not reserved.

6 Conclusions and Future Work

Container virtualization provides a quick and flexible mechanism to share com-
putational resources in machines, while improving resource utilization as com-
pared to other Cloud resource such as Virtual Machines. However, the low isola-
tion between container based applications can lead to performance degradation
in those applications. In our paper, we have shown that the default mechanism to
isolate resources between containers in Kubernetes are not sufficient to lead with
the performance degradation. Although CPU is the main source of degradation,
the competition for other resources – I/O disk, memory bandwidth and network
– should be included in the model. Moreover, our experiments show that the
CPU reservation mechanism can lead to unused resources in the cluster, and the
execution time of applications might have a high variance caused by degradation
caused by other sources distinct than the CPU.

As a solution to deal with the competition of resources between containers,
we propose a scheduling technique based on the characterization of applications.
Clients or developers provide informal information about their applications –



for instance, which resource the application uses more intensively – and in turn,
the scheduler uses that information to allocate the applications using the same
resource in different machines. In our experiments, we achieved about a 20 per-
cent improvement in the execution time of a simple scenario compared with
the default Kubernetes non-deterministic scheduler. The total execution time is
about the half compared to a scenario were resources are reserved in Kubernetes.
Additionally, the behaviour of our scheduler is deterministic, so it can be used
for further analysis. As future work, for the classification stage of applications,
machine learning algorithms can be exploited, which can even automate the
classification process and can achieve more sophisticated classification results,
while targeting more complex applications in order to improve our scheduling
approach.
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