
HAL Id: hal-01820921
https://inria.hal.science/hal-01820921

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Application and Implementation of Batch File Transfer
in Redis Storage

Hu Meng, Yongsheng Pan, Lang Sun

To cite this version:
Hu Meng, Yongsheng Pan, Lang Sun. Application and Implementation of Batch File Transfer in
Redis Storage. 2nd International Conference on Intelligence Science (ICIS), Oct 2017, Shanghai,
China. pp.228-233, �10.1007/978-3-319-68121-4_24�. �hal-01820921�

https://inria.hal.science/hal-01820921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Application and Implementation of Batch File Transfer

in Redis Storage

Hu Meng1*, Yongsheng Pan1 and Lang Sun1

1 HEFEI City Cloud Data Center Co., Ltd. Hefei, China 230601

menghu@citycloud.org.cn

Abstract. In the face of massive information, batch processing of files is an im-

portant way of information transmission and storage, and the application is

quite common. With the increasing demand for batch files processing reliability

and speed, and the problem of low storage efficiency for current batch file pro-

cessing, the paper proposes a storage method that combine distributed storage

system HDFS file storage advantage and Redis cache technology to form a rap-

id batch merge files. The files that meet the conditions are merged into the Se-

quence File and stored in the HDFS. The multiple linear regression analysis

method is used to determine the load factor, so that the load balancing is adjust-

ed and the Redis cache hash data is used to ensure the efficiency. Through ex-

periments on the corresponding file platform for file upload, query, delete and

memory usage, we analysis batch processing method and non-batch method

comparatively. It can be concluded that compared with the non-batch direct up-

load file to HDFS way, improved batch file processing method can process files

more faster and ensure the stability and reliability of the file at the same time.

Keywords: Redis, HDFS, Batch Processing, Distributed File System.

1 Introduce

File system is an important way to transmit and store information. The use of the

scale continues to expand, such as the office system, mail, message system through

which information can be shared and distributed quickly. Users in such applications,

not only requires high-speed processing speed, but also requires the reliability of stor-

age. Therefore, massive files in cloud storage research has important practical value.

Massive file storage is generally based on HDFS. HDFS is a distributed file sys-

tem, through the cheap multi-machine support large-scale data sets of large file stor-

age, with strong scalability, and solve the storage problem of space constraints. Mean-

time, HDFS can provide high-throughput data access. It is ideal solution for large-

scale data set applications, and even in the case of error can guarantee the reliability

of data storage. It assumes that the calculation elements and storage would fail, so it

maintains multiple copies of the work data to ensure that they can be redistributed

against the failed nodes. It works in parallel to ensure efficient processing. But the

storage efficiency of small files in HDFS is not high. It uses NameNode to maintain

the mapping of file path to the data block and the mapping of the data block to

2

User

DataNode, and also monitor DataNode heartbeat and maintain the number of data

block copies. When a large number of small files stored in HDFS then the NameNode

will run out of most of the memory, resulting in low storage efficiency, limiting the

file access speed.

Taking into account the above-mentioned problems, we use a separate server with

large memory to cache the data to be merged. It would improve the performance of

the management node, and avoid the main server bottlenecks. The cache server uses

Redis to store data. Redis is a memory-based high-performance Key / Value database.

It writes updated data to disk or writes modified operation to additional log files peri-

odically to ensure data persistence. And the Master-Slave synchronization provides a

high availability and reliable platform to users. The first upload files cache in Redis,

writing to disk operation only need to execute one time after merging the files which

would reduce the times of disk I / O. And file uploading processes in memory which

can provide a significant reduction of response time of file uploading.

2 Algorithm Summary of batch processing

The file storage scheme designed in this paper is to build an intermediate platform

between users and HDFS system to handle the upload, query and delete operations of

received files. As large files can be stored directly and efficiently in HDFS, the plat-

form only process small files. Processing of files that larger than 32M would return a

processing-received tag directly. Consolidated storage scheme as shown in Figure 1.

Users interact with the platform through socket. Redis is used to cache user files.

Caching files merge and store in the Sequence File of HDFS through the HDFS inter-

face. The metadata records cache in Redis.

Fig. 1. Files consolidated storage solution

2.1 Storage structure

Redis as a file cache database, save the cache file content and metadata records. The

cache structure design is as follows:

Table 1. Redis cache data storage structure

Name Type Description

RCF Hash Cache the data of the file, including the contents of

Redis

System HDFS

3

the file. Key is the file name, Value is the contents

of the file

RCFL Long The length of the file in the cache, that is, the total

length of the file data stored in the RCF

MH:DID Hash File information that update to metadata record

after serialization. For example, MH: 12 store all

the metadata structure of the folder identified as

12. Key for the file name, Value for the metadata

SDIR:DID Hash Folder structure, Key for the folder, Value for the

folder name

DID Long Automatic growth of the folder identification

The storage structure of HDFS platform is the Sequence File stored and combined

under basic directory, named after timestamp. The Sequence File uses the sequential

storage structure so that we can quickly locate the contents of the small files through

the file location Store Position recorded in metadata corresponding to File Name.

And, Sequence File uses Block compression to reduce disk usage and increase trans-

mission speed. Block compression is a series of records, that is, the small files here,

organized together, unified compressed into a Block. Block information mainly store:

the number of records contained in the block, the set of the length of each record Val-

ue, and the set of the value of each record Value.

2.2 Storage platform implementation

According to the above design proposal, based on the load cost model, the file plat-

form is divided into two parts: basic processing and background processing. Users

process basic file operation such as upload, modify and delete through the platform

interacted with Redis and Sequence File; The timer combined with the basic operation

triggers the event to invoke background processing to ensure the reliability and speed

of the system.

When uploading a file, the received file is stored in the file cache RCF in Redis and

the RCF Length of the file (RCFL) stored in the RCF is updated. Then, to determine

the RCFL, if the length achieved the size for merge, a "merge file" message MF is

send to the background processing module. When reading a file, the file will be re-

turned directly if it exists in the upload buffer of Redis. Otherwise, the contents of the

file will be read by the cache processing module and returned to the client. When

deleting a file, first determine whether it exists in RCF. If true then delete it. Other-

wise, the metadata of delete flag will be set to 0 and mark the file would be deleted.

2.3 Load Cost Model

As a complete system, not only to improve the efficiency of file storage, but also take

into account the system load conditions. The load cost of existing server resources

generally evaluated by the usage of independent CPU or memory. This statistics is not

comprehensive. For example, high CPU usage will not affect the operation which

only occupy high memory and disk I / O usage, and in actual use, the various types of

4

resources requirements of the thread operation cannot be comprehensively evaluated

either.

In order to make up for the shortage of resource statistics, this paper puts forward a

load cost model which use the user's response time as an estimate criteria, based on

the experimental analysis of statistical data to determine the cost of the formula, so to

evaluate the effects of variety factors more reasonable. The process is: while the sys-

tem is running normally, gather statistics and analysis the various types of resources,

such as CPU, memory, disk I / O and other in real-time, record the response time of

task processing threads and main customer service thread, to determine various fac-

tors. In this way, to avoid the lack of timeliness of traditional statistical estimates, the

use of real-time computing can ensure reliable and comprehensive analysis with all

kinds of environmental resources.

This paper combines the features of Sequence access and based on the GD-SIZE

algorithm, calculate the cost H with the formula (1), and archive the small file cache

replacement strategy.

 Hi = N / S (1)

The general GD-SIZE algorithm is: Each document in the buffer has a corresponding

cost. When the document is brought into the buffer, the H value of the document is

the reciprocal of the document size. When the replacement occurs, document which

has the smallest H value Hmin is swapped out, and the H value of the remaining docu-

ment becomes the H value before the replacement minus Hmin. According to the char-

acteristics of Sequence File, reading the file in a single block may need to traverse

many times. The value of H that GZ-SIZE algorithm used cannot actually reflect the

cost of the document. The cost of the document has positive correlation with the trav-

ersed files number N for visiting the file. We can multiply the reciprocal of the file

size S by N as the initial value of the GZ-SIZE algorithm, to achieve cache replace-

ment.

3 Experiment

To establish the load cost model and determine the load cost formula, the influence of

various factors on the response time of the main thread needs to be quantified. The

coefficient of influence of the factor is obtained by the method of multiple linear re-

gression analysis. In this system, CPU usage (C), memory usage (M), and disk I/O

(D) have a major impact on performance, so they are used as dependent variables and

uploading response time (T) as response variable, the multiple regression equation is

expressed as:

 T = k1C + k2M + k3D (2)

The specific operation is as follows: In the running nodes of the platform, execute

multiple processes that have great impact to C, M and D to get different resource

occupancy results, and gather the file upload time statistics. The results are as follows:

5

Table 2. Response time of the user request

T/ms C/% M/% D/(Blk_wrtn/s)

49 13 33 17.03

59 15 31 184.00

92 63 21 188.00

55 23 22 0.00

57 12 21 0.00

73 36 32 116.00

51 45 43 8.00

68 89 21 32.00

Regression analysis of the results can calculate that k1 = 0.257, k2 = 0.332, k3 =

0.103. In order to enable the user get responding within 100ms, the response time T

calculated with C, M, and D should be less than 100ms as the expected threshold of

the load. In the experimental environment, the value of k1, k2, k3 is input to the run-

ning configuration. When the background message MF is received, the load threshold

is calculated by the formula.

In order to eliminate the impact of unstable factors (such as speed), randomly se-

lected 10 small files in the standard HDFS and the use of optimization modules in the

file system to upload, and ultimately get the cost time shown below:

Fig. 2. File upload time

It can be seen that the time for file uploading is significantly reduced by batch merg-

ing of files, which is reduced from an average of 453.1 ms with traditional way to an

average of 52.3 ms by 88.45%. In the file uploading in a batch file, the implementa-

tion changes from receiving files through original HDFS memory and writing the disk

6

later to receiving files by Redis memory directly, no longer need to wait for the slow

disk I / O operation of writing. The upload speed is significantly improved.

4 Conclusion

In this paper, we consider the storage method of small files in HDFS, design and im-

plement the small files storage optimization based on reliable HDFS file system.

Combining the Redis cache mechanism effectively reduces the memory usage of the

NameNode node, the disk I / O is reduced compared to the traditional HDFS files

merge method, speeding up the file uploading and acquiring speed in a large number

of frequent file reads. It can be seen from the results of the experiment that the Redis-

based HDFS file batch merge storage optimization method can improve memory uti-

lization and speed up the file retrieval speed, and not affect the speed of file updating

and querying, ensure the fast and reliable file operation and preservation.

References

1. Codd E F. A relational model of data for large shared data banks [J]. Communications of

the ACM, 1970, 13(6): 377-387.

2. Michael Stonebraker. SQL databases v. NoSQL databases [J]. Communications of the

ACM, 2010, 53(4): 10-11.

3. Karger D,Lehman E,Leighton T,et al.Consistent hashing and random trees: distributed

caching protocols for relieving hot spots on the World Wide Web[C]//ACM Symposium

on Theory of Computing. New York, NY, USA: ACM, 1997:654-663.

4. Kubiatowicz J, Bindel D, Chen Y, et al. OceanStore: An architecture for global-scale per-

sistent storage[C]// Proceedings of the Ninth international Conference on Architectural

Support for Programming Languages and Operating Systems (2000). Boston, MA:

ASPLOS, 2000:190-201.

5. PESTER M. Multidisciplinary conceptual aircraft design using CEASIOM [D]. Ham-

burg： Hochschule für Angewandte Wissenschaften Hamburg，2010.

6. Heath C, Gray J. OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis

and Optimization Methods[C]// Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics

and Materials Conference, Aiaa/asme/ahs Adaptive Structures Conference, Aiaa. 2012.

