Skip to main content

MR Imaging via Reduced Generalized Autocalibrating Partially Parallel Acquisition Compressed Sensing

  • Conference paper
  • First Online:
Computer Vision, Graphics, and Image Processing (ICVGIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10481))

  • 1374 Accesses

Abstract

Magnetic Resonance Imaging (MRI) system in recent times demands a high rate of acceleration in data acquisition to reduce the scanning time. The data acquisition rate can be accelerated to a significant order through Parallel MRI (pMRI) approach. An additional improvement in low sensing time for data acquisition can be achieved using Compressed Sensing (CS) or Compressive Sampling that enables reconstruction of a sparse signal from sub-sample (incomplete) measurements. This paper proposes an efficient pMRI scheme by combining CS with Generalized Auto-calibrating Partially Parallel Acquisitions (GRAPPA) to produce an MR image at high data acquisition rate. A kernel of reduced size is used within GRAPPA for estimating the unobserved encoded samples. Instead of all the unobserved samples, a certain number of the same are estimated randomly. Now, an \(l_{1}\)-minimization based CS reconstruction technique is used in which the observed and the estimated unobserved samples are taken as measurements to reconstruct the final MR images. Extensive simulation results show that a significant reduction in artifacts and thereby consequent visual improvement in the reconstructed MRIs are achieved even when a high rate of acceleration factor is used. Simulation results also demonstrate that the proposed method outperforms some state-of-art pMRI methods, both in terms of subjective and objective quality assessment for the reconstructed images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semelka, R.C., Armao, D.M., Elias, J., Huda, W.: Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 25(5), 900–909 (2007)

    Article  Google Scholar 

  2. Wright, G.: Magnetic resonance imaging. IEEE Sig. Process. Mag. 14(1), 56–66 (1997)

    Article  MathSciNet  Google Scholar 

  3. Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16(1), 201–213 (2005)

    Article  Google Scholar 

  4. Sasaki, M., Ehara, S., Nakasato, T., Tamakawa, Y., Kuboya, Y., Sugisawa, M., Sato, T.: MR of the shoulder with a 0.2-t permanent-magnet unit. Am. J. Roentgenol. 154(4), 777–778 (1990)

    Article  Google Scholar 

  5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. J. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baraniuk, R.G.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–120 (2007)

    Article  Google Scholar 

  8. Edelman, R.R., Warach, S.: Magnetic resonance imaging. N. Engl. J. Med. 328(10), 708–716 (1993)

    Article  Google Scholar 

  9. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  10. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., et al.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  11. Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  12. Weller, D., Polimeni, J., Grady, L., Wald, L., Adalsteinsson, E., Goyal, V.: Combining nonconvex compressed sensing and GRAPPA using the nullspace method. In: 18th Annual Meeting of ISMRM, p. 4880 (2010)

    Google Scholar 

  13. Weller, D.S., Polimeni, J.R., Grady, L., Wald, L.L., Adalsteinsson, E., Goyal, V.K.: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction. IEEE Trans. Med. Imaging 32(7), 1325–1335 (2013)

    Article  Google Scholar 

  14. Xie, G., Song, Y., Shi, C., Feng, X., Zheng, H., Weng, D., Qiu, B., Liu, X.: Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images. Magn. Reson. Imaging 32(2), 175–183 (2014)

    Article  Google Scholar 

  15. Schmidt, R., Baishya, B., Ben-Eliezer, N., Seginer, A., Frydman, L.: Super-resolved parallel MRI by spatiotemporal encoding. Magn. Reson. Imaging 32(1), 60–70 (2014)

    Article  Google Scholar 

  16. Zhou, J., Li, J., Gombaniro, J.C.: Combining sense and compressed sensing MRI with a fast iterative contourlet thresholding algorithm. In: 12th IEEE International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1123–1127 (2015)

    Google Scholar 

  17. Chun, I.Y., Adcock, B., Talavage, T.M.: Efficient compressed sensing sense pMRI reconstruction with joint sparsity promotion. IEEE Trans. Med. Imaging 35(1), 354–368 (2016)

    Article  Google Scholar 

  18. Fischer, A., Seiberlich, N., Blaimer, M., Jakob, P., Breuer, F., Griswold, M.: A combination of nonconvex compressed sensing and GRAPPA (CS-GRAPPA). In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 17, p. 2813 (2009)

    Google Scholar 

  19. Miao, J., Guo, W., Narayan, S., Wilson, D.L.: A simple application of compressed sensing to further accelerate partially parallel imaging. Magn. Reson. Imaging 31(1), 75–85 (2013)

    Article  Google Scholar 

  20. Chang, Y., King, K.F., Liang, D., Ying, L.: Combining compressed sensing and nonlinear GRAPPA for highly accelerated parallel MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, p. 2219 (2012)

    Google Scholar 

  21. Yang, Z., Zhang, C., Deng, J., Lu, W.: Orthonormal expansion l1-minimization algorithms for compressed sensing. IEEE Trans. Sig. Process. 59(12), 6285–6290 (2011)

    Article  Google Scholar 

  22. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheikh Rafiul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Islam, S.R., Maity, S., Maity, S.P., Ray, A.K. (2017). MR Imaging via Reduced Generalized Autocalibrating Partially Parallel Acquisition Compressed Sensing. In: Mukherjee, S., et al. Computer Vision, Graphics, and Image Processing. ICVGIP 2016. Lecture Notes in Computer Science(), vol 10481. Springer, Cham. https://doi.org/10.1007/978-3-319-68124-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68124-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68123-8

  • Online ISBN: 978-3-319-68124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics