Skip to main content

Multimodal Simulations in Live Cell Imaging

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10557))

Abstract

During the last two decades a large amount of new simulation frameworks in the field of cell imaging has emerged. They were expected to serve as performance assessment tools for newly developed as well as for already existing cell segmentation or tracking algorithms. These simulators have typically been designed as single purpose tools. They generate the synthetic image data for one particular modality and one particular cell type. In this study, we introduce a novel multipurpose simulation framework, which produces the synthetic time-lapse image sequences of living endothelial cells for two different modalities: fluorescence and phase contrast microscopy, both in widefield or confocal mode. This may help in evaluating a wider range of desired image processing algorithms across multiple modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://cbia.fi.muni.cz/projects/multicomponent-cpm.html.

  2. 2.

    Reference computer: Intel(R) Xeon(R) QuadCore, 2.83 GHz, 32 GB RAM.

References

  1. Dunn, A.K.: Light scattering properties of cells. Ph.D. thesis, University of Texas at Austin (1997)

    Google Scholar 

  2. Ghaye, J., Micheli, G., Carrara, S.: Simulated biological cells for receptor counting in fluorescence imaging. BioNanoSci. 2, 94–103 (2012)

    Article  Google Scholar 

  3. Korzynska, A., Iwanowski, M.: Artifical images for evaluation of segmentation results: bright field images of living cells. In: Piętka, E., Kawa, J. (eds.) ITIB 2012. LNCS, vol. 7339, pp. 445–455. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31196-3_45

    Chapter  Google Scholar 

  4. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE TMI 26(7), 1010–1016 (2007)

    Google Scholar 

  5. Malm, P., Brun, A., Bengtsson, E.: Papsynth: simulated bright-field images of cervical smears. In: International Symposium on Biomedical Imaging: From Nano to Macro, pp. 117–120. IEEE Press (2010)

    Google Scholar 

  6. Merks, R., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4(9), e1000163 (2008)

    Article  MathSciNet  Google Scholar 

  7. Murphy, R.: CellOrganizer: image-derived models of subcellular organization and protein distribution. Methods Cell Biol. 110, 179–193 (2012)

    Article  Google Scholar 

  8. Rezatofighi, S.H., Pitkeathly, W.T.E., Gould, S., Hartley, R., Mele, K., Hughes, W.E., Burchfield, J.G.: A framework for generating realistic synthetic sequences of total internal reflection fluorescence microscopy images. In: International Symposium on Biomedical Imaging, pp. 157–160 (2013)

    Google Scholar 

  9. Sage, D., Kirshner, H., Pengo, T., Stuurman, N., Min, J., Manley, S., Unser, M.: Quantitative evaluation of software packages for single-molecule localization microscopy. Nature Methods-Tech. Life Scientists Chem. 12(8), 717–724 (2015)

    Article  Google Scholar 

  10. Scianna, M., Preziosi, L.: Multiscale developments of the cellular Potts model. Multiscale Model. Simul. 10(2), 342+ (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry Part A 75A(6), 494–509 (2009)

    Article  Google Scholar 

  12. Svoboda, D., Ulman, V.: MitoGen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging 36(1), 310–321 (2017)

    Article  Google Scholar 

  13. Svoboda, D., Ulman, V., Kováč, P., Šalingová, B., Tesařová, L., Koutná, I.K., Matula, P.: Vascular network formation in silico using the extended cellular Potts model. In: IEEE International Conference on Image Processing, pp. 3180–3183, September 2016

    Google Scholar 

  14. Yin, Z., Li, K., Kanade, T., Chen, M.: Understanding the optics to aid microscopy image segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 209–217. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9_26

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by Czech Science Foundation, grant No. GA17-05048S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Svoboda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Svoboda, D., Kozubek, M. (2017). Multimodal Simulations in Live Cell Imaging. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science(), vol 10557. Springer, Cham. https://doi.org/10.1007/978-3-319-68127-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68127-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68126-9

  • Online ISBN: 978-3-319-68127-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics