
ar
X

iv
:1

70
4.

07
40

5v
1

 [
cs

.S
I]

 2
4

A
pr

 2
01

7

The Flexible Group Spatial Keyword �ery

Sabbir Ahmad
Dept of Computer Science & Eng
Bangladesh Univ of Eng & Tech

Dhaka, Bangladesh
ahmadsabbir@cse.buet.ac.bd

Rafi Kamal
Dept of Computer Science & Eng
Bangladesh Univ of Eng & Tech

Dhaka, Bangladesh
rafikamalb@gmail.com

Mohammed Eunus Ali
Dept of Computer Science & Eng
Bangladesh Univ of Eng & Tech

Dhaka, Bangladesh
eunus@cse.buet.ac.bd

Jianzhong Qi
University of Melbourne
Melbourne, Australia

jianzhong.qi@unimelb.edu.au

Peter Scheuermann
Northwestern University

Illinois, USA
peters@eecs.northwestern.edu

Egemen Tanin
University of Melbourne
Melbourne, Australia

etanin@unimelb.edu.au

ABSTRACT

We present a new class of service for location based social net-
works, called the Flexible Group Spatial Keyword �ery, which
enables a group of users to collectively find a point of interest (POI)
that optimizes an aggregate cost function combining both spatial
distances and keyword similarities. In addition, our query service
allows users to consider the trade-offs between obtaining a sub-
optimal solution for the entire group and obtaining an optimimized
solution but only for a subgroup.

We propose algorithms to process three variants of the query:
(i) the group nearest neighbor with keywords query, which finds a
POI that optimizes the aggregate cost function for the whole group
of size n, (ii) the subgroup nearest neighbor with keywords query,
which finds the optimal subgroup and a POI that optimizes the ag-
gregate cost function for a given subgroup size m (m ≤ n), and
(iii) the multiple subgroup nearest neighbor with keywords query,
which finds optimal subgroups and corresponding POIs for each of
the subgroup sizes in the range [m,n]. We design query processing
algorithms based on branch-and-bound and best-first paradigms.
Finally, we provide theoretical bounds and conduct extensive ex-
perimentswith two real datasets which verify the effectiveness and
efficiency of the proposed algorithms.

1 INTRODUCTION

�e group nearest neighbor (GNN) query [19] and its variants, the
flexible aggregate nearest neighbor (FANN) [15] query and the con-
sensus query [1] have been previously studied in the spatial data-
base domain. Given a set Q of n queries and a dataset D, a GNN
query finds the data object that minimizes the aggregate distance
(e.g., sum or max) for the group, whereas an FANN query finds the
optimal subgroup of query points and the data object that mini-
mizes the aggregate distance for a subgroup of sizem, and a con-
sensus query finds optimal subgroups and the data objects for each
of the subgroup sizes in the range [n′, n] for n′ < n. In all these
studies, the aggregate similarity is computed based on only spatial
(or Euclidean) distances between a data point and a group of query
points. In this paper, we address variants of the above queries in
the context of the spatial textual domain, where both spatial prox-
imity and keyword similarity for a group or subgroups of users to
data points need to be considered. We call this class of query the
flexible group spatial keyword query.

person

restaurant

o3

o5

o4

o6

o7

{"Pizza","Italian"}

o2

{"KungPaoChicken","YumCha"}

{"KuangPaoChicken","Chinese"}

{"Chinese","KungPaoChicken","YumCha"}

{"Burger"}
{"Pizza"}

{"Burger","Pizza"}

{"Spaghetti"}

{"Pizza","Italian","Burger","Spaghetti"}

{"Chinese","KungPaoChicken"}

{"Burger","Pizza","Spaghetti"}

{"Italian"}

o1

q1

q3

q2

q4

q5

Figure 1: A set of user locations {q1,q2,q3,q4,q5} and a set

of restaurants {o1, o2, ..., o7}. Restaurant o7 suits the whole

group the best. If size-4 subgroups are considered, then

{q1,q2,q3,q5} is optimal with o6 being the best restaurant.

�e flexible spatial keyword query has many applications in
the spatial and multimedia database domains. For example, in a
location-based social networks (e.g., Foursquare), a group of users
residing at their homes or offices can share their locations as spa-
tial coordinates and their preferences as sets of keywords to find a
Point of Interest (POI), e.g., restaurant or function venue, that opti-
mizes a cost function composed of aggregate spatial distances and
keyword similarities for the group. Since finding a POI that suits
all group members might be difficult due to the diverse nature of
choices, the group might prefer a result that is not optimal for the
entire group, but is optimal for a subset of it. In such cases, we
need to find optimal a subgroup of users and a POI that minimizes
the cost function for the subgroup.

Figure 1 illustrates the query, where a group of five friends {q1,q2,q3,q4,q5}
is trying to decide on a restaurant for a Sunday brunch. Each per-
son has a location and a preferred type of food, represented by
a set of keywords such as {“Burger”, “Pizza”} or {“Italian”}, etc.
�ere is a set of restaurants {o1,o2, ..., o7} to be selected from. Each
restaurant also has a location and specializes in a certain type of
cuisine which is represented by a set of keywords, e.g., {“Pizza”,
“Italian”}. Assume that a cost function f () is used, which consid-
ers distance only and aggregates the total travel distance of all the
query users in the group to a selected data object. As can be seen
in Figure 1, o5 is the data object closest to the group of query users
overall and should be returned by the query. On a different occa-
sion, the group of friends would like to maximize the number of

http://arxiv.org/abs/1704.07405v1

keywords in common between the group query and the POI re-
turned by the query. If we modify the cost function now to stand
for the dissimilarity between the respective keyword sets, to be de-
noted as д(), then it turns out that o7 is the one that minimizes this
function because it fully covers the keywords of the query users.
Both f and g are extreme cases. In general, it is preferred to find
an answer that optimizes both spatial distance and keyword set
dissimilarity at the same time, which is the problem studied in this
paper. Under such case, neither o5 nor o7 is a good query answer, as
they are either not satisfying the query keywords or too far away.
However, if we allow leaving out a user, say q4, then more answer
candidates become available. In particular, o6 will become the best
choice of the subgroup {q1,q2,q3,q5}, as it covers all the keywords,
and is closer to the group. In fact, leaving any other query user out
(e.g., q2) would not obtain a be�er cost function value. �erefore,
{q1,q2,q3,q5} is the optimal subgroup of size 4 and o6 is the cor-
responding optimal data point.

We observe that in many practical applications relaxing the re-
quirement, i.e., not including all the query objects, has potential
benefits in finding good quality answer. Consider a company that
wants to find a suitable hotel where to hold the annual shareholder
meeting. Each shareholder is identified by his location and a set of
keywords describing the type of environment he would like the
hotel to be located, like “metropolitan area”, “resort” , “high alti-
tude”, “low altitude”, etc. If the cost function to be optimized is
an aggregate of the maximum distance traveled and text similar-
ity the hotel selected maybe too far some of the shareholders. On
the other hand, by omi�ing some travelers, the company could
accommodate the rest with a shorter travel time. Similarly, in a
ride-sharing service, the scheduler may want to find a car for mul-
tiple ride-sharers with certain service constraints formulated as
keywords. As a third example, in a multimedia domain, one may
want to find an image that matches with a subgroup of query im-
ages, where an object or query image is represented as a point (in
a high-dimensional space) and a set of tag-words. Generally, one
may prefer the subgroup size to be maximized, and hence, it bene-
fits to explore the optimal solutions for different subgroup sizes.

�e key challenge in processing the flexible group spatial key-
word queries is how to utilize both the spatial and keyword pref-
erences and to efficiently prune the search space. Another major
challenge is how to find the optimal subgroups of various sizes in
one pass over the data set. We design pruning methods based on
branch and bound algorithms to process the queries. We further
optimize the algorithmswith the best-first search paradigm tomin-
imize the number of data objects visited. Our contributions are as
follows:

• We propose a new class of group queries in the spatial
textual domain: (i) the group nearest neighbor with key-
words (GNNK) query that finds the best data with respect
to our cost function for the whole group, (ii) the flexible
subgroup nearest neighbor with keywords (FSNNK) that
finds the optimal subgroup and the corresponding best
POI for a given subgroup size of sizem (withm ≤ n, the
group size)and (iii) the multiple flexible subgroup nearest
neighbor with keywords (MFSNNK) that returns in one
pass the optimal subgroups and corresponding POIs for

all subgroups of size m, where n′ ≤ m ≤ n and n′ being
the minimum subgroup size.

• Wepropose pruning strategies based on branch and bound
as well as best-first strategies for these three queries. �e
resultant algorithms can process the queries in a single
pass over the dataset.

• Weprovide theoretical bounds for our algorithms, and eval-
uate them through an extensive experimental evaluation
on real datasets. �e results demonstrate the effectiveness
and efficiency of the proposed algorithms.

�e rest of the paper is organized as follows. Section 2 formu-
lates the queries studied. Section 3 reviews related work. Section 4
describes the proposed algorithms. Sections 5 gives the cost anal-
ysis of algorithms. Section 6 reports the experimental results. Sec-
tion 7 concludes the paper with a discussion of future work.

2 PROBLEM STATEMENT

Let D be a geo-textual dataset. Each object o ∈ D is defined as a
pair (o.λ,o.ψ), where o.λ is a location point and o.ψ is a set of key-
words. A query object q is similarly defined as a pair (q.λ,q.ψ). Let
dist(q.λ,o.λ) be the spatial distance betweenq and o, and similarity key(q.ψ ,o.ψ)
be the similarity between their keyword sets. We normalize both
dist(q.λ,o.λ) and similarity key(q.ψ ,o.ψ) so that their value lie be-
tween 0 and 1 (inclusive). �e cost of o with respect to q is ex-
pressed in terms of their spatial distance and keyword set distance:

cost(q,o) = α · dist(q.λ,o.λ)

+ (1 − α) · (1 − similarity key(q.ψ ,o.ψ))

Here, α is a user-defined parameter to control the preference of
spatial proximity over keyword set similarity. Usingdist key(q.ψ ,o.ψ) =
1 − similarity key(q.ψ ,o.ψ), the cost function can be rewri�en as:

cost(q,o) = α · dist(q.λ,o.λ) + (1 − α) · dist key(q.ψ ,o.ψ)

We formulate the GNNK, FSNNK and MFSNNK queries based
on cost(q,o) as follows.

Definition 2.1. (GNNK). Given a set D of spatio-textual objects,
a set Q of query objects {q1,q2, ...,qn}, and an aggregate function
f , the GNNK query finds an object oi ∈ D such that for any o′ ∈
D \ {oi },

f (cost(q j ,oi) : q j ∈ Q) ≤ f (cost(q j , o
′) : q j ∈ Q)

Definition 2.2. (FSNNK). Given a setD of spatio-textual objects,
a setQ of query objects {q1,q2, ...,qn}, an aggregate function f , a
subgroup sizem (m ≤ n), and the set SGm of all possible subgroups
of sizem, the FSNNK query finds a subgroup sдm ∈ SGm and an
object oi ∈ D such that for any o′ ∈ D \ {oi },

f (cost(q j ,oi) : q j ∈ sдm) ≤ f (cost(q j , o
′) : q j ∈ sдm)

and for any subgroup sд′m ∈ SGm \ {sдm },

f (cost(q j ,oi) : q j ∈ sдm) ≤ f (cost(q′, o′) : q′ ∈ sд′m)

Definition 2.3. (MFSNNK). Given a set D of spatio-textual ob-
jects, a setQ of query objects {q1,q2, ...,qn}, an aggregate function
f , and minimum subgroup size n′ (n′ ≤ n), the MFSNNK query
returns a set S of (n − n′ + 1) 〈subдroup,data object〉 pairs such
that, each pair 〈sдm , om〉 is the result of the FSNNK query with
subgroup sizem (n′ ≤ m ≤ n).

2

If the users are interested in the k-best POIs then the queries
can be generalized as k-GNNK, k-FSNNK and k-MFSNNK queries.
�ese queries are straightforward extensions and the definitions
are omi�ed. In this paper, we focus providing efficient solutions for
the above queries for aggregate functions SUM (

∑

qj ∈Q cost(q j ,o))

and MAX (maxqj ∈Q cost(q j ,o)). Without loss of generality our so-
lutions work for any aggregate function that is monotonic (e.g.,
MIN). In our context, a monotonic function means, if we add more
elements to the query setQ , the aggregate cost will either increase
or remain the same.

3 RELATED WORK

Nearest Neighbor�eries. Nearest neighbor (NN) queries have
been well studied in the spatial database community [2, 13]. �e
generalization of the nearest neighbor query is known as the kNN
query. �e depth-first (DF) [22] and the best-first (BF) [14] algo-
rithms are commonly used to process the kNN queries. �ey as-
sume the data objects to be indexed in a tree structure, e.g., the
R-tree [12]. In the DF algorithm, child nodes are recursively vis-
ited according to their min dist from the query point. Here the
min dist of a node is defined as the minimum Euclidean distance
between its minimum bounding rectangle (MBR) and the query
point. It gives a lower bound over the distances of the child nodes,
and hence the algorithm can safely prune the nodes withmin dist
greater than the distance of the nearest neighbor already retrieved.
�e BF algorithm maintains a priority queue of nodes to be visited.
�e nodes in the queue are ordered based on themin dist . Initially
the children of the root node are inserted into the priority queue.
At each step, the node with the lowestmin dist is popped from the
queue and its children are inserted. �e algorithm returns the first
k data objects popped from the queue as the kNN query answer.

Group Nearest Neighbor �eries. �e group nearest neigh-
bor (GNN) query [18] finds a data point that minimizes the aggre-
gate distance for a group of query locations. SUM, MAX and MIN
are commonly used aggregate functions. �e generalization of the
GNN query is the kGNN query, where k best group nearest neigh-
bors are to be found. Several methods for processing GNN queries
have been presented in [19]. Among those, the MBM algorithm is
the state of the art. It visits the R-tree nodes in the order of their
aggregate distance from the set of query points. �e distance of
the best data object retrieved so far is used as the pruning bound
while visiting the nodes.

�e flexible aggregate nearest neighbor (FANN) query [15] is a
generalization of the GNN query. It returns the data object that
minimizes the aggregate distance to any subset of ϕn query points,
where n is the size of the query group and 0 < ϕ ≤ 1. �e query
also returns the corresponding subset of query points. Two exact
algorithms to process the FANN query have been proposed in [15].
�e first uses a branch and bound method to restrict the search
space, assuming that the data objects are indexed in an R-tree. �e
second uses the threshold algorithm [11] to find the answer.

A query similar to the FANNquery called the consensus query [1]
is the main motivation of our paper. Given a minimum subgroup
size m and a set of n query points, the consensus query finds ob-
jects that minimize the aggregate distance for all subgroups with

sizes in the range [m,n]. A BF algorithm was proposed to process
the consensus query.

�e above group queries [1, 15, 19] only consider spatial proxim-
ity while a selecting data object, whereas, we consider both spatial
proximity and textual similarity.

Spatial Keyword �eries. �e spatial keyword query con-
sists of a query location and a set of query keywords. A spatio-
textual data object is returned based on its spatial proximity to the
query location and textual similarity with the query keywords. A
number of indexing structures for processing the spatial keyword
query have been proposed [5, 9, 16, 21, 24, 25]. Among them, the
IR-tree [9, 16] has been shown to be a highly efficient one. �e
IR-tree augments each node of the R-tree with an inverted file cor-
responding to the keyword sets of the child nodes. �e WAND
method [3, 7, 10] is proposed for document queries. �is method
is mainly designed for document retrieval and uses TF-IDF mea-
sures for document ranking. In our study, we consider both spatial
and textual similarity, and use the IR-tree to index the data objects,
although other spatial keyword indexes may be used as well. �e
WAND method in particular can be applied in the leaf level of the
IR-tree to help compute the textual similarity.

A variant of the spatial keyword query, called spatial group key-
word query has been introduced [4, 6]. It finds a group of objects
that cover the keywords of a single query such that both the ag-
gregate distance of the objects from the query location and the
inter-object distances within the group are also minimized. Exact
and approximate algorithms for three types of aggregate functions
(SUM, MAX and MIN) have been presented in [4]. [8] studies the
aggregate keyword routing (AKR) query (AKR). For a given set of
users, an AKR query finds a route through a set of objects K that
covers all users’ keywords and minimizes the maximum distance
travelled by any user to a meeting point p through K .

In a study parallel to ours, the group top-k spatial keyword
query has been proposed recently [23]. �is paper presents a branch-
and-bound technique to retrieve the top-k spatial keyword objects
for only one group of queries. �is technique is essentially our
branch-and-bound method described in Section 4.3 for the GNNK
queries. As we show in our experimental evaluation (Section 6),
our best-first technique always outperforms the branch-and-bound
method substantially even for a single group query.

None of the existing work in the geo-textual domain addresses
the problem of finding optimal subgroups and data objects in terms
of spatial proximity and textual similarity, which is our main focus
in this paper.

4 OUR APPROACH

�is section presents our algorithms to process the GNNK, FSNNK
and MFSNNK queries. �e key challenge is to utilize the spatial
distance and keyword preference together to constrain the search
space as much as possible, since the performance of the algorithms
is directly proportional to the search space (in both running time
and I/O). Another challenge in the FSNNK and MFSNNK queries
is to find the optimal subgroup from all possible subgroups.

3

4.1 Preliminaries

We use the IR-tree [9] to index our geo-textual dataset D. Other
extensions of the IR-tree, such as the CIR-tree, the DIR-tree or the
CDIR-tree [9] can be used as well.

�e IR-tree is essentially an inverted file augmented R-tree [12].
�e leaf nodes of the IR-tree contain references to the objects from
dataset D. Each leaf node has also a pointer to an inverted file
index corresponding to the keyword sets of the objects stored in
that node. �e inverted file index stores a mapping from the key-
words to the objects where the keywords appear. Each node N of
the IR-tree has the form (N .Λ, N .Ψ), where N .Λ is the minimum
bounding rectangle (MBR) that bounds the child node entries, and
N .Ψ is the union of the keyword sets in the child node entries.

Example 4.1. Figure 2a shows the locations of seven spatial ob-
jects o1,o2, ...,o7. Figure 2b shows their keyword sets. �e corre-
sponding IR-tree and inverted files are not shown for space limita-
tion. �

o6
R4 o5

o4

o2

o3

R3

R5

R2

R1

R6

q4

q2

q1

q3

q5

o7

o1

(a) Object locations with MBR

Objects Keywords

o1.ψ t1,t2,t7
o2.ψ t2,t5
o3.ψ t2,t7
o4.ψ t1,t2,t3
o5.ψ t5,t6
o6.ψ t1,t3,t4
o7.ψ t1,t3,t4,t6

(b) Keywords of objects

Figure 2: Locations and keywords of objects and queries

4.2 Cost Function

�is subsection elaborates the cost function to be optimized. As
defined in Section 2, the cost of an object is a combination of spatial
distance and keyword dissimilarity:

cost(q,o) = α · dist(q.λ,o.λ)

+ (1 − α) · (1 − similarity key(q.ψ ,o.ψ))

Weuse the Euclidean distance as the spatial distancemetric. �e
spatial distance is normalized by the maximum spatial distance be-
tween any pair of objects in the dataset, dmax . �us,

dist(q.λ,o.λ) = euclidean distance(q.λ,o.λ)/dmax

Each keyword in the dataset is associated with a weight. Fol-
lowing a previous study on spatial keyword search [9], we use the
LanguageModel [20] to generate the keyword weights. �eweight
of each keyword is normalized by the maximum keyword weight
wmax present in the dataset. Let y.w be the weight of keyword y.
�en the text relevance between q and o is the normalized sum of
the weights of the keywords shared by q and o:

similarity key(q.ψ ,o.ψ) =
1

|q.ψ |

∑

y∈q .ψ∩o .ψ

y.w

wmax

Various alternative measures for textual data have been pro-
posed, such as cosine similarity [21], the Extended Jaccard [17],
etc, but extensive experiments [17] have shown that not one simi-
larity measure outperforms the others in all cases.

Example 4.2. We continue with the example shown in Figure 2.
Let the keywords of the query points be: q1.ψ = {t1, t2}, q2.ψ =
{t4}, q3.ψ = {t3, t6}, q4.ψ = {t1}, and q5.ψ = {t4, t6}. Let us
assume α = 0.5, the weight of any keyword w = 1 (wmax = 1),
and f =SUM.

We show the aggregate cost computation for o6. Let the dis-
tances from q1,q2,q3,q4, and q5 to o6 be 3.5, 5.5, 6.5, 1, and 9.5

units, and dmax be 10 units. �en dist(q3.λ,o6.λ) =
6.5
10 = 0.65.

Meanwhile, q3.ψ ∩ o6.ψ = {t3}. �us,

similarity key(q3.ψ ,o6.ψ) =
t3.w
|q3 .ψ |

= 0.5, and overall,

cost(q3, o6) = α · dist(q3.λ,o6.λ)

+ (1 − α) · (1 − similarity key(q3.ψ ,o6.ψ))

= 0.5 ∗ 0.65 + (1 − 0.5) ∗ (1 − 0.5) = 0.575

Similarly, we compute the costs for q1,q2,q4, and q5, which are
0.175, 0.535, 0.05, and 0.725, respectively. �us, the aggregate cost
is f (cost(Q,o6)) =

∑

qj ∈Q
cost(q j ,o6) = 2.05. �

�e cost of an IR-tree node is defined similarly to the cost of a
data object:

cost(q,N) = α min dist(q.λ,N .Λ)

+ (1 − α) (1 − similarity key(q.ψ ,N .Ψ))

Here, min dist(q.λ,N .Λ) is the minimum spatial distance be-
tween the query location and theMBRofN ; similarity key(q.ψ ,N .Ψ)
is the textual similarity between the query keywords and the key-
words of the node. �e cost of an IR-tree node gives a lower bound
over the cost of its children, as formalized by the following lemma:

Lemma 4.3. Let N be an IR-tree node and q be a query object. If

Nc is a child of N , then cost(q,N) ≤ cost(q,Nc).

Proof 1. �e child Nc can either be a data object or an IR-tree
node. In either case min dist(q.λ,N .Λ) is smaller than or equal
to that of Nc according to the R-tree structure. Meanwhile, the
keyword set ofNc is a subset of the keyword set ofN . �us, N will
have a higher (or equal) textual similarity value (and hence lower
keyword set distance) with the query keywords. Overall, we have
cost(q,N) ≤ cost(q,Nc).

4.3 Branch and Bound Algorithms for GNNK
and FSNNK

Traditional nearest neighbor algorithms access the data indexed in
a spatial index (e.g., R-tree) and restricts its search space by prun-
ing bounds [22]. We extend this idea to design two branch and
bound algorithms for the GNNK and FSNNK queries. �ese two al-
gorithms will work as the baseline algorithms in the experiments.

Branch and BoundAlgorithm forGNNK.We use the follow-
ing heuristic to prune the unnecessary nodes while searching the
IR-tree for the best object with the minimum aggregate cost.

Heuristic 1. A node N can be safely pruned if its aggregate cost

with respect to the query setQ is greater than or equal to the smallest

cost of any object retrieved so far.

�is heuristic is derived from Lemma 4.3. As f is a monotonic
function and cost(q,N) ≤ cost(q,Nc) for any childNc ofN , f (cost(Q,N))
will be less than or equal to f (cost(Q,Nc)). Let min cost be the

4

Algorithm 1 GNNK-BB (R,Q, f)

INPUT: IR-tree index R of all data objects, n query points Q =
{q1,q2, ...,qn}, monotonic cost function f .

OUTPUT: A data object o that minimizes the aggregate cost with
respect to the query set Q

1: min cost ← ∞

2: stack ← ∅

3: stack .push(root)

4: repeat

5: N ← stack .pop()

6: if N is an intermediate node then
7: for all Nc in N .children do
8: if f (cost(Q,Nc)) <min cost then

9: stack .push(Nc)

10: else if N is a leaf node then
11: for all o in N .children do
12: if f (cost(Q,o)) <min cost then

13: min cost ← f (cost(Q,o))

14: best object ← o

15: until stack is empty
16: return best object

smallest cost of any data object retrieved so far. �en f (cost(Q,N)) ≥
min cost implies that the cost of any descendant of N is greater
than or equal tomin cost , and we can safely prune N .

Algorithm 1 shows the pseudo-code of the branch and bound
algorithm based on the heuristic, denoted by GNNK-BB. �e algo-
rithm maintains a stack of nodes/objects to be visited. �e lowest
cost object visited so far as well as the lowest cost are maintained
in the variables best object and min cost , respectively. �e algo-
rithm starts with inserting the root node of the IR-tree into the
stack (Line 3). At each step, it gets the next node/object from the
stack (Line 5) and computes the aggregate query cost for each of
the child nodes (if any) (Lines 7-8 and 11-12). If the child is a data
object and its cost is lower thanmin cost , then we updatemin cost
with the aggregate cost of that child (Lines 12-14). Otherwise the
child is an IR-tree node and if its cost is lower thanmin cost , we
insert it into the stack so that we can visit its children later (Lines
8-9). At the end when the stack becomes empty, the algorithm re-
turns the object corresponding tomin cost as the result (Line 16).

Table 1: Example of the GNNK-BB algorithm

Step S Elm f (cost) best obj min cost S (updated)

1 root root
R5 : 2.475 ∅ ∞

R5,R6R6 : 0.725 ∅ ∞

2 R6,R5 R6
R3 : 1.75 ∅ ∞

R5,R3,R4R4 : 1.1 ∅ ∞

3 R5,R3,R4 R4
o6 : 2.05 o6 2.05

R5,R3o7 : 1.625 o7 1.625

4 R5,R3 R3
o4 : 2.75 o7 1.625

R5o5 : 3.0 o7 1.625

5 R5 R5 f (cost(Q,R5)) >min cost ⇒ prune R5; S = ∅, return o7

Example 4.4. (GNNK-BB). We continue with Example 4.2. Ta-
ble 1 summarizes the MFSNNK-BF steps using aggregate function
SUM. Column S shows the stack; column Elm shows the element
popped out; f (cost) shows the aggregate costs of the child nodes;

column best obj andmin cost shows current best object and min-
imum cost, respectively; column S (updated) shows the updated
stack a�er processing the popped element.

At start, the tree root is popped out. �e aggregate cost for each
childrenR5 andR6 is less than the initialized cost∞ and so, they are
pushed into the stack. In step 3, leaf node R4 is popped. So best obj
andmin cost are updated. In Step 4, the cost of each object o4 and
o5 is greater thanmin cost , so no update occurs. In step 5 cost of
R5 is greater thanmin cost . So, R5 is pruned, and stack S becomes
empty. �en algorithm terminates, and o7 is returned, which is the
current best object. �

Branch and Bound Algorithm for FSNNK.We design a simi-
lar branch and bound algorithm named FSNNK-BB for the FSNNK
query. �e following heuristic is used for pruning.

Heuristic 2. Let N be an IR-tree node andm be the required sub-

group size. If sдm is the best subgroup of sizem, andmin cost is the

smallest cost of any size-m subgroup retrieved so far, we can safely

prune N if f (cost(sдm ,N)) ≥min cost .

�is heuristic is derived from Lemma 4.3. Let Nc be a child of N
and sд′m be the best subgroup corresponding to Nc . �en we have

f (cost(sд′m ,N)) ≤ f (cost(sд′m ,Nc))

Meanwhile sдm is the best subgroup for N among all possible sub-
groups of sizem. �us,

f (cost(sдm ,N)) ≤ f (cost(sд′m ,N))

�e two inequalities imply that f (cost(sдm ,N)) ≤ f (cost(sд′m ,Nc)),
i.e., the aggregate cost for the best size-m subgroup of N is lower
than or equal to that of the best size-m subgroup of any of its chil-
dren. �erefore, if f (cost(sдm ,N)) ≥ min cost , f (cost(sдm ,Nc))
will also be greater than or equal tomin cost , and we should prune
N .

�e overall tree traversal procedure is similar to that of theGNNK-
BB algorithm. �e difference is in the calculation of the optimiza-
tion function, where the optimization function value is computed
based on the the top-m queries with the lowest costs. For an inter-
mediate node N , we compute the best subgroup and the aggregate
cost (bound) in a similar way for all of its child nodes. First, the
costs from all the query points to a node are calculated. �en m
query points with lowest costs are taken to get the best subgroup
sдm . If the aggregate cost for sдm is lower thanmin cost , then we
insert the child node into the stack. Otherwise, it is pruned. We
omit the details due to space constraints.

4.4 Best-first Algorithms for GNNK and FSNNK

Branch and bound techniques may access unnecessary nodes dur-
ing query processing. To improve the query efficiency by reduc-
ing disk accesses, we propose in this section best-first search tech-
niques that only access the necessary nodes.

Best-first algorithm for GNNK. �e best-first procedure for
the GNNK query, denoted by GNNK-BF, is shown in Algorithm 2.
�is algorithm uses a minimum priority queue P to maintain the
nodes/objects to be visited according to their aggregate costs. At
start, the queue P is initialized with the root of the IR-tree (Lines
1-2). At each iteration of the main loop (Lines 3-13), the element
with the minimum aggregate cost is popped out from P . �ere

5

Algorithm 2 GNNK-BF (R,Q, f)

INPUT: IR-tree index R of all data objects, n query points Q =
{q1,q2, ...,qn}, monotonic cost function f .

OUTPUT: A data object o that minimizes the aggregate cost with
respect to the query set Q

1: Initialize a new min priority queue P
2: P .push(root ,0)
3: repeat

4: E ← P .pop()

5: if E is an intermediate node N then

6: for all Nc in N .children do
7: P .push(Nc , f (cost(Q,Nc)))

8: else if E is a leaf node N then

9: for all o in N .children do
10: P .push(o, f (cost(Q,o)))

11: else if E is a data object o then
12: return o
13: until P is empty
14: return null

are three cases to be considered for a popped element: (i) If it is an
intermediate node, then all child nodes are pushed into P according
to their aggregate costs (Lines 5-7). (ii) If it is a leaf node, then all
child objects are pushed into P according to their aggregate costs
(Lines 8-10). (iii) If it is an object, then it is returned as the query
result (Lines 11-12), and the algorithm terminates (Line 14).

Example 4.5. (GNNK-BF). We continue with Example 4.2. �e
algorithm steps are summarized in Table 2, where SUM is used
as the aggregate function. Column P shows the current elements
in the queue; column Element shows the element popped out in
the current step; column f (cost) shows the aggregate costs of the
child nodes of the popped element; column P (updated) shows the
updated queue a�er processing the popped element.

Table 2: Example of the GNNK-BF algorithm

Step P Element f (cost) P (updated)

1 root root
R5 : 2.475 R6,R5
R6 : 0.725

2 R6,R5 R6
R3 : 1.75 R4,R3,R5
R4 : 1.1

3 R4,R3,R5 R4
o6 : 2.05 o7,R3, o6,R5
o7 : 1.625

4 o7,R3,o6,R5 o7 return o7

At start, the tree root is popped out. �e aggregate costs for
the children R5 and R6 are computed and they are pushed into the
queue. �e node R6 has the lowest aggregate cost, and hence it
is at the front of the queue. In the next step, R6 is popped out
and the aggregate costs for its children R3 and R4 are computed.
�is procedure repeats until Step 4 where o7 is popped out. �is is
the first data object popped out. According to the algorithm, this
object is the best object for the query, and hence it is returned as
the query answer. �

Lemma 4.6. (Proof of Correctness) GNNK-BF returns the object

with the minimum aggregate cost w.r.t. the query set Q .

Proof 2. Let o be the data object returned by GNNK-BF, i.e, o is the
first data object visited by the algorithm. Assume that a different
object o′ is the data object with the minimum aggregate cost. �en
f (cost(Q,o′)) ≤ f (cost(Q,o)). Let N be the first common ancestor
of o and o′ in the IR-tree. We know from Lemma 4.3 that the cost of
an IR-tree node gives a lower bound over the costs of its children.
�us, any node in the path from N to the parent of o′ will have a
lower aggregate cost than that of o′. �is implies that these nodes
have lower aggregate costs than that of o, and should be visited be-
fore o. �erefore, when o is visited, o′must be in the priority queue
as its parent has already been visited. Because o′ has a lower cost
than o has, it should be visited first, which means that o′ must be
the data object returned by GNNK-BF rather than o. �is is con-
flict to our assumption, and hence o′ should not have been existed.
�erefore, o must be the data object with the minimum aggregate
cost.

Algorithm 3 FSNNK-BF (R,Q,m, f) [partial]

1: …
2: if E is an intermediate node N then

3: for all Nc in N .children do
4: Compute cost(q1,Nc), ..., cost(qn,Nc)
5: sдm ← firstm query points with the lowest costs
6: P .push(Nc , f (cost(sдm ,Nc)))

7: else if E is a leaf node N then

8: …
9: else if E is a data object o then
10: return (o,o.best subдroup)

11: …

Best-first Algorithm for FSNNK.�e best-first algorithm for
the FSNNK query, denoted by FSNNK-BF, is similar toGNNK-BF al-
gorithm. �is algorithm also maintains a minimum priority queue
to manage the nodes/objects to be visited from the IR-tree, and tra-
verses the tree from the root. Here, optimization function is com-
puted for top-m queries. Best subgroup is chosen from the lowest
m query points, and pushed into the priority queue. For an inter-
mediate node, aggregate costs and best subgroup are calculated for
all the child nodes of the node. For a leaf node, it is done for all the
children objects, and then pushed into the priority queue. When
an object is first popped, it is returned as the result. �e partial
pseudo-code is shown in Algorithm 3.

Example 4.7. (FSNNK-BF). We continue with Example 4.2 for
the FSNNK query. Let the subgroup size m = 3. �e algorithm
steps for FSNNK-BF are summarized in Table 3. Column Element
shows the elements popped out from P at every step; column sдm
shows the best subgroup of size m corresponding to the current
node or data object, which is also the set of m lowest cost query
points corresponding to the current node or data object; column
fm(cost) is the aggregate cost over the query points in sдm ; column
P (updated) shows the updated queue a�er processing the popped
element.

At start, the tree root is popped out. �e individual costs for
children R5 and R6 are computed. �e best subgroups for R5 and
R6 are shown in the sдm column. �e aggregate costs for R5 and
R6 are also computed. Both nodes are then pushed into P . In the

6

Table 3: Example of the FSNNK-BF algorithm

Step Element fm (cost) sдm P (updated)

1 root
R5 : 1.2 q4,q1,q2 R6,R5R6 : 0.225 q4,q1,q2

2 R6
R3 : 0.45 q1,q4,q3 R3,R4,R5R4 : 0.475 q4,q1,q2

3 R3
o4 : 1.15 q1,q4,q3 R4, o4,R5,o5o5 : 1.7 q3,q1,q5

4 R4
o6 : 0.75 q4,q1,q2 o6, o7,o4,R5,o5o7 : 0.8 q1,q4,q3

5 o6 return (o6, {q1,q4,q3})

next step, R6 is popped out, as it has the minimum cost. �e com-
putation for the children of R6 is carried out in the same way. �is
procedure repeats, and at Step 5, o6 is popped out. It is the first ob-
ject popped out, which gives the minimum aggregate cost among
all data objects. FSNNK-BF returns o6 and the corresponding best
subgroup {q1,q4,q3} as the query answer. �

4.5 Algorithms for MFSNNK

Algorithm 4MFSNNK-BF (R,Q,m, f)

INPUT: IR-tree index R of all data objects, n query points Q =
{q1,q2, ...,qn}, minimum subgroup sizem(m ≤ n), monotonic
cost function f .

OUTPUT: A set of 〈data object , subдroup〉 pairs 〈o∗
k
, sд∗

k
〉 for all

subgroup sizes between m and n (inclusive), where 〈o∗
k
, sд∗

k
〉

minimizes f (cost(sдk ,o)).
1: Initialize a new min priority queue P
2: min costs[i] ← ∞ form ≤ i ≤ n
3: root .query costs[i] ← 0 form ≤ i ≤ n
4: P .push(root ,0)
5: repeat

6: E ← P .pop()

7: if ∃i ∈ [m,n]: E.query costs[i] <min costs[i] then
8: if E is an intermediate node then
9: for all Nc in E.children do

10: Compute cost(q1,Nc), ..., cost(qn,Nc)
11: total cost ← 0
12: for i =m → n do

13: sдi ← top i lowest cost query points
14: total cost += f (cost(sдi ,Nc))

15: Nc .query costs[i] = f (cost(sдi ,Nc))

16: if f (cost(sдi ,Nc)) <min costs[i] for any
subgroup size i ∈ [m,n] then

17: P .push(Nc , total cost)

18: else if E is a leaf node then
19: for all o in N .children do
20: Compute cost(q1,o), ..., cost(qn, o)
21: for i =m → n do

22: sдi ← top i lowest cost query points
23: if f (cost(sдi ,o)) <min costs[i] then

24: min costs[i] ← f (cost(sдi ,o))

25: best objects[i] ← o

26: best subдroups[i] ← sдi

27: until P is empty
28: return best objects,best subдroups

To process the MFSNNK query with a minimum subgroup size
m, we can run FSNNK-BF n−m+1 times (for subgroup sizesm,m+
1, ...,n) and return the combined results. We call this the MFSNNK-
N algorithm. However, MFSNNK-N requires accessing the dataset
n−m+1 times, which is too expensive. To avoid this repeated data
access, we design an algorithm based on best-first method that can
find the best data objects for all subgroup sizes betweenm and n
in a single pass over the dataset. �e algorithm is based on the
following heuristic.

Heuristic 3. Let N be an IR-tree node andm be the minimum sub-

group size. Let sдi be the best subgroup of size i (m ≤ i ≤ n), and

min costi be the smallest cost for subgroup size i from any object re-

trieved so far. We can safely prune N if f (cost(sдi ,N)) ≥min costi
for any i .

�e proof of correctness is straightforward based on Heuristic 1
and Heuristic 2, and is omi�ed due to space limit.

Algorithm 4 summarizes the proposed procedure, denoted as
MFSNNK-BF. �e algorithm maintains a minimum priority queue
P to manage the nodes/objects to be visited from the IR-tree (Line
1). �e minimum costs for all subgroup sizes in the range [m,n]
are set to∞ at the beginning (Line 2). Each tree node to be visited
is associated with an array query costs that keeps track of the ag-
gregate costs for all subgroup sizes in the range [m,n] (Line 3). �e
algorithm pushes the tree root into the queue P and then the main
loop begins (Lines 6-36). At each iteration, an element is popped
out from P . �e associated query costs (already computed at a pre-
vious iteration) is compared withmin costs . If query cost for any
subgroup size is lower than themin cost of that subgroup size, the
element needs to be considered further. Otherwise the element is
pruned according to Heuristic 3 (Lines 7-8). �ere are two cases to
be further considered: (i) If the element is an intermediate node,
then we compute the costs for each child node (Lines 10-11). We
compute the aggregate cost for each subgroup size in the range [m,
n] (Lines 13-17), and store the corresponding best query subgroup
in sдi . If the aggregate cost is larger thanmin cost for all subgroup
sizes, the child node can be safely pruned. Otherwise we insert the
child node into P according to its total cost. (Lines 18-20) (ii) If the
element is a leaf node, then a similar computation is performed for
each child object (Lines 23-26). If the aggregate cost is less than
min cost for a subgroup size i , then min costs[i],best objects[i],
and best subдroups[i] are updated (Lines 27-31).

Table 4: Example of the MFSNNK-BF algorithm

Step Elm m = 3,m = 4,m = 5 best obj min costs total cost P (updated)

1 root
R5 : 1.2, 1.775, 2.475 {∅, ∅, ∅} {∞,∞,∞} 5.45

R6,R5
R6 : 0.225, 0.45, 0.725 {∅, ∅, ∅} {∞,∞,∞} 1.4

2 R6
R3 : 1.2, 1.075, 1.75 {∅, ∅, ∅} {∞,∞,∞} 4.025

R4,R3,R5
R4 : 0.225, 0.775, 1.1 {∅, ∅, ∅} {∞,∞,∞} 2.13

3 R4
o6 : 0.75, 1.325, 2.05 {o6,o6, o6} {0.75, 1.325, 2.05} ∅

R3,R5
o7 : 0.8, 1.125, 1.625 {o6,o7, o7} {0.75, 1.125, 1.625} ∅

4 R3
o4 : 1.15, 1.9, 2.75 {o6,o6, o7} {0.75, 1.125, 1.625} ∅

R5
o5 : 1.7, 2.325, 3.0 {o6,o6, o7} {0.75, 1.125, 1.625} ∅

5 R5 R5.query costs[i] >min costs[i] for allm = i , and hence R5 can be pruned

Example 4.8. (MFSNNK-BF). We continue with Example 4.2 for
MFSNNK-BF. Let the minimum subgroup size be 3. �en we need
to find the best objects and the corresponding subgroups form = 3,
m = 4, and m = 5. �e algorithm steps are shown in Table 4.

7

ColumnElm shows the elements poppedout from the queueP . �e
following column show the aggregate costs (fm (cost)) for different
subgroup sizes. total cost is the sum of fm(cost) for all subgroup
sizes.

At start,min costs is initialized with value∞, and root is pushed
into P . �en nodes are popped and calculations are performed as
shown in Step 1 and Step 2. At Step 3, R4 is popped out, which is
a leaf node. �e algorithm updatesmin costs , best objects and the
subgroup set best subдroups as R4 has objects as children. When
a object is popped,best objects are updated according tomin costs .
When P becomes empty a�er Step 5, the algorithm returns (o6, {q4,q1,q2}),
(o7, {q4,q1,q3,q2}), (o7, {q4,q1,q3,q2,q5}). �

A relaxed pruning bound. Heuristic 3 states that, for an IR-
tree node N , if min costi is the smallest cost for subgroup size i
found so far, thenwe can pruneN if f (cost(sдi ,N)) ≥ min costi for
any i ∈ [m..n]. Here, sдi denotes the best subgroup of size i corre-
sponding to N . �e MFSNNK-BF algorithm based on this heuristic
has a for-loop to compute f (cost(sдi ,N)) and test if f (cost(sдi ,N)) ≥
min costi holds for any i (Lines 12 to 17 in Algorithm 4).

A possible simplification is to only testwhether f (cost(sдm ,N)) ≥
min costn , i.e., whether the best subgroup of sizem corresponding
to N has a cost lower than the min cost for the whole group of
size n found so far. If this holds, then N can be safely pruned, as
formalized by the following heuristic.

Heuristic 4. Let N be an IR-tree node and m be the minimum

subgroup size. Let sдm be the best subgroup of size m correspond-

ing to N , andmin costn be the smallest cost for the whole group of

size n from any object retrieved so far. We can safely prune N if

f (cost(sдm ,N)) ≥min costn .

�e proof is straightforward. Since we consider a monotonic
aggregate cost function, we have:

f (cost(sдm ,N)) ≤ f (cost(sдm+1,N)) ≤ ... ≤ f (cost(sдn ,N)).

If

f (cost(sдm ,N)) ≥ min costn,

then

min costn ≤ f (cost(sдm ,N)) ≤ ... ≤ f (cost(sдn ,N)).

�us, we can safely prune N . Applying this heuristic, Lines 12 to
17 of Algorithm 4 can be replaced by:

If f (cost(sдm ,Nc)) <min costs[n] then

P .push(Nc , f (cost(sдm ,Nc)))

Note that, while this heuristic simplifies the node pruning com-
putation, it also relaxes the pruning bound, which may cause more
nodes to be processed. We will use experiments to study the effec-
tiveness of this heuristic.

4.6 Discussion

All the algorithms presented in the previous subsections can be
straightforwardly extended to find the k best objects. Both the
GNNK-BF and FSNNK-BF algorithms incrementally output the best
objects. �e first k objects accessed by these algorithms are the k
best objects. Particularly, in the case of FSNNK-BF, we can use
a queue to store the k best objects and the corresponding best

subgroups. For the GNNK-BB, FSNNK-BB and MFSNNK-BF algo-
rithms, we can use a heap of size k to hold k currently found best
objects. When the algorithms terminate, the heap contains the k
best objects. Same as in FSNNK-BF, for the subgroup queries we
can store the best objects and the corresponding best subgroups to-
gether, so that when the algorithms terminate, we not only obtain
the best objects but also the corresponding best subgroups.

�ough in our problem formulation, we assume that all users
in the group have equal priorities, our proposed cost function can
be adapted for users with different priorities. Assume that each
individual query qi has a prioritypi associated with it, where for a
group of n queries p1 +p2 + ...+pn = n. To incorporate user prior-
ities, we need to modify our definition of aggregate cost function

as follows: f (cost(Q,o)) = f (
cost (qj,o)

pi
: q j ∈ Q). �us, users with

higher priorities (i.e., larger priority values pi) would have lower
costs, and hence the algorithms will tend to converge more to the
objects that are spatially closer and textually more similar to the
users with higher priority.

5 COST ANALYSIS

We analytically compare the I/O cost and CPU cost of the algo-
rithms including GNNK-BB, GNNK-BF, FSNNK-BB, FSNNK-BF, MFSNNK-
N, andMFSNNK-BF. Table 5 summarizes the analytical results. Note
that MFSNNK-N calls FSNNK-BF for n −m + 1 times. Its costs are
just a multiplication of those of FSNNK-BF. We will omit it in the
discussion and simply list its costs in the table.

We use the following notation in the analysis. Let Cm be the
maximum number of entries in a disk block:

Cm = block size/size of a data entry

Let Ce be the effective capacity of the IR-tree used to index the
dataset D, i.e., the average number of entries in an IR-tree node.
Let |D | be the size of D. �e average height of an IR-tree is h =
⌈

logCe |D |
⌉

. �e expected number of nodes in an IR-tree is the total
number of nodes in all tree levels (leaf nodes being level 1 and the
root node being level h), which is:

h
∑

i=1

|D |

Cie
= |D |

(

1

Ce
+

1

C2
e

+ · · · +
1

Che

)

=

|D |

Ce − 1
(1 −

1

Che
) ≈

|D |

Ce − 1
.

We assume that an IR-tree node size equals a disk block.
According to the structure of the IR-tree, an inverted index that

maps keywords to the inner nodes of the tree is stored separately
from the tree structure. When a group spatial keyword query is
issued this inverted index is preloaded for all the query keywords,
which will be used to guide the search to tree nodes that contain
the query keywords. �e cost of this preloading, which is propor-
tional to the number of keywords in both the data points and the
queries, is the same for every algorithm studied. We denote the I/O
cost and CPU cost of the preloading by ioi and cpui , respectively.

5.1 I/O Cost

For all the algorithms studied, the I/O costs depend on the number
of IR-tree nodes accessed. Further, when a leaf node is accessed, its
corresponding inverted index that maps the keywords to the data
points in the node is accessed as well. Analyzing the I/O cost of
accessing an inverted index is beyond the scope of this paper. For

8

Table 5: Summary of Costs

Algorithm I/O CPU

GNNK-BB ioi + (1 −wдb)(
|D |
Ce−1

+
|D |
Ce
· iol) cpui + (1 −wдb)(

|D |
Ce−1

· cpuд +
|D |
Ce
· cpul)

GNNK-BF ioi + (1 −wдf)(
|D |
Ce−1

+
|D |
Ce
· iol) cpui + (1 −wдf)(

|D |
Ce−1

· cpuд +
|D |
Ce
· cpul)

FSNNK-BB ioi + (1 −wsb)(
|D |
Ce−1

+
|D |
Ce
· iol) cpui + (1 −wsb)(

|D |
Ce−1

· cpus +
|D |
Ce
· cpul)

FSNNK-BF ioi + (1 −wsf)(
|D |
Ce−1

+
|D |
Ce
· iol) cpui + (1 −wsf)(

|D |
Ce−1

· cpus +
|D |
Ce
· cpul)

MFSNNK-N ioi + (n −m + 1)(1 −wsf)(
|D |
Ce−1

+
|D |
Ce
· iol) cpui + (n −m + 1)(1 −wsf)(

|D |
Ce−1

· cpus +
|D |
Ce
· cpul)

MFSNNK-BF ioi + (1 −wmb)(
|D |
Ce−1

+
|D |
Ce
· iol) cpui + (1 −wmb)(

|D |
Ce−1

· cpum +
|D |
Ce
· cpul)

simplicity, we denote this I/O cost by iol , and the associated CPU
cost by cpul .

GNNK-BB, GNNK-BF, FSNNK-BB, FSNNK-BF, andMFSNNK-BF
all traverses the IR-tree for only once. In the worst case, all the tree
nodes plus the inverted index of all the leaf nodes are accessed.
�us, the worst-case I/O costs for these methods are the same:
|D |

Ce − 1
+

|D |

Ce
· iol .

In the average case, some of the IR-tree nodes are pruned dur-
ing the traversal. We quantify the percentage of pruned nodes in
the tree traversal as the pruning power, denoted by w ; the num-

ber of nodes accessed is then (1 − w)(
|D |

Ce − 1
+

|D |

Ce
· iol) for all

the algorithms except FSNNK-BF, where w should be replaced by
wдb , wдf , wsb , wsf , and wmb for GNNK-BB, GNNK-BF, FSNNK-
BB, FSNNK-BF, and MFSNNK-BF, respectively. Note that we usew
to represent the pruning power on both inner nodes and leaf nodes,
which might be different in reality. We argue that this is still a rea-
sonable simplification since the number of leaf nodes pruned will
be proportional to the number of inner nodes pruned. Also we aim
to compare the costs of the different algorithms, not to compute the
exact costs.

�e pruning power of the different algorithms is associatedwith
the metrics used to determine whether a tree node needs to be ac-
cessed. In the algorithms studied, the same pruning metric (e.g.,
min cost) is used for different algorithms of the same query vari-
ant (GNNK-BB and GNNK-BF for the GNNK query). However, the
order that the tree nodes are accessed in the different algorithms of
the same query variant (e.g., GNNK-BB and GNNK-BF) are differ-
ent. �is leads to different shrinking rates of the value of the prun-
ing metric. In particular, the BF algorithms and MFSNNK-BF use
best-first traversals, which always access the node with the small-
est (estimated) optimization function value first. In comparison,
the BB algorithms simply push the tree nodes into a stack, and ac-
cess the node at the top of the stack regardless of the optimization
function value. Heuristically, the BF algorithms’ pruning metric
values should shrink faster. Additionally, the BF algorithms termi-
nates early once a data entry is popped out from the queue, while
the BB algorithms need to access every node in the stack anyway.
Intuitively, the BF algorithms should have be�er pruning power
than those of the corresponding BB algorithms, i.e, wдf > wдb
and wsf > wsb . MFSNNK-BF only traverses the tree once, and it
has a similar pruning strategy to that of FSNNK-BF. Its I/O cost
is smaller than that of MFSNNK-N that calls FSNNK-BF multiple
times.

5.2 CPU Cost

�eCPU cost can be considered as the product of the CPU cost per
block (node) multiplied by the number of blocks (nodes) accessed.
�e I/O cost analysis provides the number of nodes accessed. �e
CPU cost per block, denoted by cpu , involves optimization function
computation.

Both GNNK algorithms computes f (cost(Q,Nc)) for every child
node NC when an inner node N accessed, and f (cost(Q,o)) for
every data point o if N is a leaf node. �e CPU cost is proportional
to the size of the query group (n), the size of the node N (Ce), and
the size of the keywords involved. Sine this per node CPU cost of
both GNNK-BB and GNNK-BF is the same, we simply denote it by
cpuд . Note that GNNK-BF still has a lower overall CPU cost as it
accesses a smaller number of nodes.

Similarly, we denote the per node CPU cost of FSNNK-BB and
FSNNK-BF by cpus . �is CPU cost involves computing cost(qi ,Nc)
(cost(qi , o)) for every query user qi , finding to top-m users, and
computing f () on the cost of thesem users. FSNNK-BF also has a
lower overall CPU cost as it accesses a smaller number of nodes.

MFSNNK-N has the same per node CPU cost cpus . Let the per
node CPU cost of MFSNNK-BF be cpum . �is cost will be higher
than cpus as MFSNNK-N only computes the optimization function
value of a given subgroup size each time it access a node, while
MFSNNK-BF computes for n−m+1 subgroup sizes together. How-
ever, cpum < (n −m + 1)cpus . �is is because, as shown in lines
11 to 17 of the MFSNNK-BF algorithm, the functions cost(qi ,Nc)
are computed for only once rather than n −m + 1 times, and the
function f () for the different sub-group size are computed progres-
sively instead of repeatedly. As a result, the overall CPU cost of
MFSNNK-BF will be lower than that of MFSNNK-N.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Settings

We evaluate the performance of our algorithms for all three types
of queries GNNK, FSNNK, and MFSNNK. �e branch and bound
algorithms presented in Section 4.3 (GNNK-BB and FSNNK-BB)
are used as the baseline for the GNNK and FSNNK queries. We
compare our BF algorithms, GNNK-BF and FSNNK-BF (Section 4.4)
with baselines. We use theMFSNNK-N algorithm as the baseline al-
gorithm for theMFSNNKqueries, and compare it with theMFSNNK-
BF algorithm proposed in Section 4.5.

9

Table 6: Dataset properties

Parameter Flickr Yelp

Dataset size 1,500,000 60,667
Number of unique keywords 566,432 783
Total number of keywords 11,579,622 176,697

Avg. number of keywords per object 7.72 2.91

Table 7: �ery parameters

Parameter name Values Default Value

Number of queried data points (k) 1, 10, 20, 30, 40, 50 10
�ery group size (n) 10, 20, 40, 60, 80 10
Subgroup size (m, %n) 40%, 50%, 60%, 70%, 80% 60%

Number of query keywords 1, 2, 4, 6, 8, 10 4
Size of the query space .001%, .01%, .02%, .03%, .04%, .05% 0.01%

Size of the query keyword set 1%, 2%, 3%, 4%, 5% 3%
Spatial vs. textual preference (α) 0.1, 0.3, 0.5, 0.7, 1.0 0.5

Dataset Size (Flickr) 1M, 1.5M, 2M, 2.5M 1.5M

Dataset. We use two real datasets from Yahoo! Flickr1 and
Yelp2 in our experiments. �e Flickr dataset is generated from the
images from Yahoo! Flickr users that are geo-tagged and contain
a set of keyword tags. �e Yelp dataset contains the basic infor-
mation about different local businesses. Each data object contains
the location of the business along with its categories as the key-
words. Only the data locations within US have been used in our
experiment. �e properties of these two datasets are detailed in
Table 6.

�eryGeneration. We generate 20 groups of query objects for
each experiment and average the results. Each query object con-
tains a location and a set of keywords. To generate the locations
in each group of query objects, we first randomly choose a point
in the data space. �en we define a square query space centered
at the chosen point. All the query object locations of the group
will then be uniformly generated inside this square query space.
�e default query space area has been selected to be 0.01% (250
sq. miles) of the total query area, which is approximately the size
of a medium sized US city. Similarly, for generating the query key-
words, a subset of keywords (1%-5% of the data objects’ keywords)
from all keywords inside the query space is first chosen, and then
the required of number of keywords are selected from this subset.
�is ensures the overlapping of query keywords among users.

We also vary the group size (n), the minimum subgroup size (m),
the number of query keywords, the number of queried data points
(k), dataset size, and α . Table 7 shows ranges and default values of
these parameters.

Setup. We use the IR-tree to index the datasets, which is disk
resident. �e fanout of the IR-tree is chosen to be 50, and the page
size is 4KB. All the algorithms are implemented in Java and the
experiments are conducted on a Core i7-4790 CPU @ 3.60 GHz
with 4 GB of RAM. �e hard drive used is Seagate ST500DM002-
1BD142 with 7200 RPM. SUM and MAX are used as the aggregate
functions in all the experiments.

We measure the running time and the I/O cost (number of disk
page accesses) in the experiments. Note that the running time in-
cludes the computation and I/O time. We use Flickr as our default
dataset, unless stated otherwise.

1h�ps://webscope.sandbox.yahoo.com
2h�ps://www.yelp.com/academic dataset

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

1 10 20 30 40 50

ru
n
n
in
g
ti
m
e
(m

s)

k

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(a)

0

100

200

300

400

500

600

700

800

1 10 20 30 40 50

#
p
ag
e
ac
ce
ss
es

k

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 40 60 80

ru
n
n
in
g
ti
m
e
(m

s)

Group Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(c)

0

200

400

600

800

1000

1200

1400

10 20 40 60 80

#
p
ag
e
ac
ce
ss
es

Group Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(d)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 10

ru
n
n
in
g
ti
m
e
(m

s)

Number of Keywords

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(e)

0

100

200

300

400

500

600

700

800

900

1 2 4 8 10

#
p
ag
e
ac
ce
ss
es

Number of Keywords

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(f)

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5

ru
n
n
in
g
ti
m
e
(m

s)

Keyword Space Size (%)

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(g)

0

100

200

300

400

500

600

700

800

1 2 3 4 5

#
p
ag
e
ac
ce
ss
es

Keyword Space Size (%)

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(h)

0

2000

4000

6000

8000

10000

12000

1M 1.5M 2M 2.5M

ru
n
n
in
g
ti
m
e
(m

s)

Dataset Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(i)

0

100

200

300

400

500

600

700

1M 1.5M 2M 2.5M

#
p
ag
e
ac
ce
ss
es

Dataset Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(j)

Figure 3: �e effect of varying k (a-b), query group size (c-

d), number of query keywords (e-f), query keyword set size

(g-h) and dataset size (i-j) in running time and I/O

6.2 �e GNNK�ery Algorithms

We conduct seven sets of experiments to evaluate the performance
of GNNK-BB and GNNK-BF. In each set of experiments, one param-
eter (e.g., group sizen or α) is varied while all other parameters are
set to their default values. GNNK-BF outperforms GNNK-BB in all
experiments both in terms of running time and I/O cost.

Varying k . Figure 3 (a-b) shows that for both GNNNK-BB and
GNNK-BF, the processing time and the I/O cost increase with the
increase of k . For both SUM and MAX, on average GNNK-BF runs
3.5 times faster than GNNK-BB. We also observe that for a larger

10

https://webscope.sandbox.yahoo.com
https://www.yelp.com/academic_dataset

value of k , GNNK-BF algorithm outperforms GNN-BB in a greater
margin, which shows the scalability of GNNK-BF. �e I/O cost of
GNNK-BF is much less than that of GNNK-BB as GNNK-BF only
accesses the necessary nodes.

Varying �ery Group Size. Figure 3 (c-d) shows the effect
of the query group size (n). �e query processing costs of both
algorithms increase as the value ofn increases. On average, GNNK-
BF runs approximately 4 times faster than GNNK-BB.

Varying Number of �ery Keywords. Figure 3 (e-f) shows
the effect of the number of keywords in each query object. GNNK-
BF again outruns GNNK-BB in all the experiments. Also, the query
processing costs of both algorithms increase as the number of key-
words in each query object increases. �is can be explained by that
a larger set of query keywords takes more time to compute the ag-
gregate cost function. Meanwhile, more data objects’ keyword sets
would overlap with the query keywords, which would reduce the
aggregate cost function values and make it more difficult to prune
the data objects.

Varying�ery Space Size. We observe that the running time
of our algorithms remains almost constant with the change of the
query space area (not shown in graphs). Since varied query space
areas are insignificant in compared to the data space, we do not
observe any significant change in this experiment.

Varying �ery Keyword Set Size. Figure 3 (g-h) shows the
effect of the query keyword set size (the subset of keywords from
where the query keywords are generated). We see that the running
time of our algorithms do not follow any regular pa�ern with the
change of the query keyword set size and remains relatively stable.

Varying α . We observe that, as α increases, the query costs
decrease. A larger α means that spatial proximity is deemed more
important than textual similarity. When α increases, the impact of
the keyword similarity becomes smaller and algorithms converge
faster (not shown in graphs).

Varying Dataset Size. Figure 3 (i-j) shows the effect of varying
number of objects. Both running time and I/O cost of our proposed
algorithms increase at a lower rate than the baseline algorithms.
When the number of data objects increases from 1M to 2.5M, the
running time of GNNK-BB increases 6 times for SUM and 4.7 times
for MAX. But the increase in running time of GNNK-BF is only 2.7
times for SUM and 2.5 times for MAX.

6.3 �e FSNNK �ery Algorithms

We performed experiments on FSNNK-BB and FSNNK-BF, by vary-
ing query group size, subgroup size, number of query keywords,
query space size, query keyword set size, k , dataset size, and α .
FSNNK-BF outperforms FSNNK-BB in all the experiments. For
space constraints, we only show the effect of varying the subgroup
size (in %n) in Figure 4 (a-b). On average, FSNNK-BF runs 3.5 times
faster and takes 40% less I/O than FSNNK-BB.

6.4 �e MFSNNK �ery Algorithms

We performed similar experiments on MFSNNK-N and MFSNNK-
BF. In all the experiments MFSNNK-BF significantly outperforms
MFSNNK-N. Due to space constraints, we only show the effect of

0

1000

2000

3000

4000

5000

6000

40 50 60 70 80

ru
n
n
in
g
ti
m
e
(m

s)

Subgroup Size (%)

FSNNK-BB (SUM)
FSNNK-BF (SUM)
FSNNK-BB (MAX)
FSNNK-BF (MAX)

(a)

0
100
200
300
400
500
600
700
800
900
1000

40 50 60 70 80

#
p
ag
e
ac
ce
ss
es

Subgroup Size (%)

FSNNK-BB (SUM)
FSNNK-BF (SUM)
FSNNK-BB (MAX)
FSNNK-BF (MAX)

(b)

0

1000

2000

3000

4000

5000

6000

40 50 60 70 80

ru
n
n
in
g
ti
m
e
(m

s)

Subgroup Size (%)

MFSNNK-N (SUM)
MFSNNK-BF (SUM)
MFSNNK-N (MAX)
MFSNNK-BF (MAX)

(c)

0

200

400

600

800

1000

1200

1400

40 50 60 70 80

#
p
ag
e
ac
ce
ss
es

Subgroup Size (%)

MFSNNK-N (SUM)
MFSNNK-BF (SUM)
MFSNNK-N (MAX)
MFSNNK-BF (MAX)

(d)

Figure 4: �e effect of varying subgroup sizem (a-b) andmin-

imum subgroup size (c-d) in running time and I/O

varying the minimum subgroup size (in percentage of n) in Fig-
ure 4 (c-d). When the minimum subgroup size increases, the run-
ning time of both algorithms decrease as expected. Meanwhile,
the costs of MFSNNK-BF change in a much smaller scale, which
demonstrates the be�er scalability of MFSNNK-BF. On average,
MFSNNK-BF runs about 4 times faster than MFSNNK-N.

0

500

1000

1500

2000

2500

3000

40 50 60 70 80

ru
n
n
in
g
ti
m
e
(m

s)

Subgroup Size (%)

MFSNNK-BF (SUM)
MFSNNK-R (SUM)

MFSNNK-BF (MAX)
MFSNNK-R (MAX)

(a)

0

100

200

300

400

500

600

700

40 50 60 70 80
#
p
ag
e
ac
ce
ss
es

Subgroup Size (%)

MFSNNK-BF (SUM)
MFSNNK-R (SUM)

MFSNNK-BF (MAX)
MFSNNK-R (MAX)

(b)

0

20

40

60

80

100

120

140

40 50 60 70 80

ru
n
n
in
g
ti
m
e
(m

s)

Subgroup Size (%)

MFSNNK-BF (SUM)
MFSNNK-R (SUM)

MFSNNK-BF (MAX)
MFSNNK-R (MAX)

(c)

0

20

40

60

80

100

120

40 50 60 70 80

#
p
ag
e
ac
ce
ss
es

Subgroup Size (%)

MFSNNK-BF (SUM)
MFSNNK-R (SUM)

MFSNNK-BF (MAX)
MFSNNK-R (MAX)

(d)

Figure 5: �e effect of varying subgroup size for Flickr (a-b)

and Yelp (c-d) with and without usingHeuristic 4 in running

time and I/O

Effect of Heuristic 4. We have also implemented Heuristic 4
for the MFSNNK query. In Figure 5, we show the performance of
MFSNNKwith andwithout usingHeuristic 4, denoted byMFSNNK-
R and MFSNNK-BF, respectively. We can see that, when different
values ofm or different data sets are used, the algorithm may per-
form be�er or worse with Heuristic 4. Particularly, on the Flikr
data set, the algorithm with the pruning heuristic works be�er
when 40%n <m < 80%n, and worse whenm ≤ 40%n orm ≥ 80%n

11

(shown in Figure 5 (a-b)). On the Yelp data set, the algorithm per-
formance fluctuates more but the algorithm still performs be�er
with the pruning heuristic in about half of the cases tested (shown
in Figure 5 (c-d)). �is is expected since the heuristic sacrifices the
tightness of the pruning bound for a more efficient computation
of the pruning bound, as discussed in Section 4.5. Depending on
different data sets and/or different values ofm, this sacrifice may
or may not be worthy. We would like to argue that, however, since
the data sets are usually pre-known, we may empirically pre-test
the heuristic performance under a set of different values ofm and
n, and only activate the heuristic at query time if the queried group
size falls in a pre-test range where the heuristic shows be�er per-
formance.

0

20

40

60

80

100

120

140

160

180

10 20 40 60 80

ru
n
n
in
g
ti
m
e
(m

s)

Group Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(a)

0

20

40

60

80

100

120

140

160

10 20 40 60 80

#
p
ag
e
ac
ce
ss
es

Group Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(b)

0

20

40

60

80

100

120

140

160

180

40 50 60 70 80

ru
n
n
in
g
ti
m
e
(m

s)

Subgroup Size (%)

MFSNNK-N (SUM)
MFSNNK-BF (SUM)
MFSNNK-N (MAX)
MFSNNK-BF (MAX)

(c)

0

20

40

60

80

100

120

140

160

180

40 50 60 70 80

#
p
ag
e
ac
ce
ss
es

Subgroup Size (%)

MFSNNK-N (SUM)
MFSNNK-BF (SUM)
MFSNNK-N (MAX)
MFSNNK-BF (MAX)

(d)

Figure 6: �e effect of varying query group size (a-b) and

minimum subgroup size (c-d) in running time and I/O

6.5 Experiments on Yelp dataset

We have run the same set of experiments as mentioned above on
the Yelp dataset. All of our experimental results show similar trends
in both datasets. Due to page limitations, we only present the ex-
perimental results for varying group size for GNNK queries and
minimum subgroup size for MFSNNK queries with Yelp dataset in
Figure 6 (a-b) and Figure 6 (c-d), respectively.

7 CONCLUSION

We presented a new type of group spatial keyword query suitable
for a collaborative environment. �is query aims to find the best
POI that minimizes the aggregate distance and maximizes the text
relevancy for a group of users. We have studied three instances of
this query, which return (i) the best POI for the whole group, (ii)
the optimal subgroup with the best POI given a subgroup sizem,
and (iii) the optimal subgroups and the corresponding best POIs
of different subgroup sizes in m,m + 1, ...,n. In all these queries,

our proposed best-first approach runs approximately 4 times faster
(on average) than the branch and bound approach for both real
datasets.

�is study brings a number of future studies. For example, a
study that allows users to set the value of α to reflect their prefer-
ence of spatial proximity over textual relevance would make the
query more user friendly. Also, extending the algorithms to road
networks would further improve their practicality.

REFERENCES
[1] Mohammed Eunus Ali, Egemen Tanin, Peter Scheuermann, Sarana Nutanong,

and Lars Kulik. 2016. Spatial Consensus�eries in a Collaborative Environment.
TSAS 2, 1 (2016), 3:1–3:37.

[2] Stefan Berchtold, Christian Böhm, Daniel A Keim, and Hans-Peter Kriegel. 1997.
A cost model for nearest neighbor search in high-dimensional data space. In
PODS. 78–86.

[3] Andrei Z Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
2003. Efficient query evaluation using a two-level retrieval process. In CIKM.
426–434.

[4] Xin Cao, Gao Cong, Tao Guo, Christian S Jensen, and Beng Chin Ooi. 2015.
Efficient Processing of Spatial Group Keyword�eries. TODS 40, 2 (2015), 13.

[5] Xin Cao, Gao Cong, and Christian S Jensen. 2010. Retrieving top-k prestige-
based relevant spatial web objects. PVLDB 3, 1-2 (2010), 373–384.

[6] Xin Cao, Gao Cong, Christian S Jensen, and Beng Chin Ooi. 2011. Collective
spatial keyword querying. In SIGMOD. 373–384.

[7] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh Ganti. 2011. Interval-
based pruning for top-k processing over compressed lists. In ICDE. 709–720.

[8] Kunjie Chen, Weiwei Sun, Chuanchuan Tu, Chunan Chen, and YanHuang. 2012.
Aggregate keyword routing in spatial database. In GIS. 430–433.

[9] Gao Cong, Christian S Jensen, and Dingming Wu. 2009. Efficient retrieval of
the top-k most relevant spatial web objects. PVLDB 2, 1 (2009), 337–348.

[10] Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-
max indexes. In SIGIR. 993–1002.

[11] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algo-
rithms for middleware. J. Comput. System Sci. 66, 4 (2003), 614–656.

[12] Antonin Gu�man. 1984. R-trees: a dynamic index structure for spatial searching.
In SIGMOD. 47–57.

[13] Gisli R Hjaltason and Hanan Samet. 1995. Ranking in spatial databases. In SSD.
83–95.

[14] Gı́sli R Hjaltason and Hanan Samet. 1999. Distance browsing in spatial
databases. TODS 24, 2 (1999), 265–318.

[15] Yang Li, Feifei Li, Ke Yi, Bin Yao, and Min Wang. 2011. Flexible aggregate simi-
larity search. In SIGMOD. 1009–1020.

[16] Zhisheng Li, Ken CK Lee, Baihua Zheng, Wang-Chien Lee, Dik Lee, and Xufa
Wang. 2011. Ir-tree: An efficient index for geographic document search. TKDE
23, 4 (2011), 585–599.

[17] Ying Lu, Jiaheng Lu, Gao Cong,WeiWu, and Cyrus Shahabi. 2014. Efficient algo-
rithms and cost models for reverse spatial-keyword k-nearest neighbor search.
ACM Transactions on Database Systems (TODS) 39, 2 (2014), 13.

[18] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. 2004.
Group nearest neighbor queries. In ICDE. 301–312.

[19] Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. 2005. Ag-
gregate nearest neighbor queries in spatial databases. TODS 30, 2 (2005), 529–
576.

[20] Jay M Ponte and W Bruce Cro�. 1998. A language modeling approach to infor-
mation retrieval. In SIGIR. 275–281.

[21] João B Rocha-Junior, OrestisGkorgkas, Simon Jonassen, and Kjetil Nørvåg. 2011.
Efficient processing of top-k spatial keyword queries. In SSTD. 205–222.

[22] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Nearest neigh-
bor queries. In ACM SIGMOD Record, Vol. 24. 71–79.

[23] Kai Yao, Jianjun Li, Guohui Li, and Changyin Luo. 2016. Efficient Group Top-k
Spatial Keyword�ery Processing. In ApWeb. 153–165.

[24] Dongxiang Zhang, Yeow Meng Chee, Anirban Mondal, Anthony KH Tung,
and Masaru Kitsuregawa. 2009. Keyword search in spatial databases: Towards
searching by document. In ICDE. 688–699.

[25] Yuxin Zheng, Zhifeng Bao, Lidan Shou, and Anthony K. H. Tung. 2015. IN-
SPIRE: A Framework for Incremental Spatial Prefix�ery Relaxation. TKDE 27,
7 (2015), 1949–1963.

12

	Abstract
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Our Approach
	4.1 Preliminaries
	4.2 Cost Function
	4.3 Branch and Bound Algorithms for GNNK and FSNNK
	4.4 Best-first Algorithms for GNNK and FSNNK
	4.5 Algorithms for MFSNNK
	4.6 Discussion

	5 Cost Analysis
	5.1 I/O Cost
	5.2 CPU Cost

	6 Experimental Evaluation
	6.1 Experimental Settings
	6.2 The GNNK Query Algorithms
	6.3 The FSNNK Query Algorithms
	6.4 The MFSNNK Query Algorithms
	6.5 Experiments on Yelp dataset

	7 Conclusion
	References

