1803.08890v1 [cs.FL] 23 Mar 2018

arXiv

The Density of Linear-time Properties*

Bernd Finkbeiner and Hazem Torfah

Saarland University

Abstract. Finding models for linear-time properties is a central prob-
lem in verification and planning. We study the distribution of linear-
time models by investigating the density of linear-time properties over
the space of ultimately periodic words. The density of a property over
a bound n is the ratio of the number of lasso-shaped words of length n,
that satisfy the property, to the total number of lasso-shaped words of
length n. We investigate the problem of computing the density for both
linear-time properties in general and for the important special case of w-
regular properties. For general linear-time properties, the density is not
necessarily convergent and can oscillates indefinitely for certain proper-
ties. However, we show that the oscillation is bounded by the growth of
the sets of bad- and good-prefix of the property. For w-regular properties,
we show that the density is always convergent and provide a general al-
gorithm for computing the density of w-regular properties as well as more
specialized algorithms for certain sub-classes and their combinations.

1 Introduction

Given a linear-time property, specified for example as a formula of a temporal
logic, how hard is it to guess a model of the property? Temporal models play
a fundamental role in verification and planning, for example in the satisfiability
problem of temporal logic [I9], in model checking [2], and in temporal plan-
ning [I6]. With this paper, we initiate the first systematic study of the density
of the linear-time temporal models.

The first choice to be made at the outset of such an investigation is how to
represent temporal models. We base our study on ultimately periodic words, i.e.,
infinite words of the form u-v*, where u and v are finite words. This is motivated
by the fact that ultimately periodic words are the natural and commonly used
representation in all applications, where the underlying state space is finite (cf.
[5]). With this choice of representation, our central question thus is the following:
Suppose you are given an infinite word u-v*, where v and v are two finite words,
that have been chosen randomly from all sequences over a given alphabet. How
likely is it that u - v* is a model of a given linear-time property?

We consider the cardinality and the density function in terms of the bound n.
The cardinality of a property ¢ for a given bound n is the number of lassos of
length n, that are models for the property ¢, denoted by #,(n) = [{(u,v) €

* This work was partly supported by the ERC Grant 683300 (OSARES) and by the
Deutsche Telekom Foundation.

2 Bernd Finkbeiner and Hazem Torfah

X*x Xt | Ju-v| = n, u-vY € ¢}|. The density function of a property ¢
determines the rate of the cardinality of ¢ over the whole solution space for
the specific bound n, and is denoted by V,(n) = #,(n)/|[{(u,v) € T* x T* |
|u-v| =n} =#,(n)/(n-|X|™). To answer the question posed above, we study
the asymptotic behavior of the density function, i.e., the limit nlgr;o V,(n), which

we denote by V2 and refer to as the density of the property .

Consider the following linear-time properties over the alphabet ¥ = 2{®b}
The density function of the property given by the LTL formula ¢; = aAObAOOD
is constant and equal to % for bounds larger than two, because there is no
restrictions on the labeling once the constraint of a labeling a followed by two
b’s has been satisfied. The density of the property po = allb is equal to %
as the increase in the number of models is twice as large as the increase in the
number of non-models for increasing bounds. Properties like 3 = ((aAOb) have
densities equal to 0, because the cardinality of the set of bad-prefixes increases
exponentially with increasing bounds, in comparison to a linear increase in the

number of its models.

Two key questions of interest are whether or not the density exists for a
linear-time property and, if the answer to the first question is yes, to compute
its value. It is not obvious that the density exists for linear-time properties. In
the case of w-regular properties, we show that the density indeed always exists.
This stands in contrast to regular properties of finite words, where this is not
always true. Consider, for example, the regular property (aa)*. Models for the
property exist only for even bounds, and the density function oscillates between 0
and 1 for the alphabet {a}. The w-regular property (aa)® for the same alphabet,
however, has ultimately periodic models for all bounds and its density function
converges to 0. The density for linear-time properties in general, nevertheless,
does not necessarily exist. We show that for certain not w-regular properties, the
density function oscillates indefinitely without converging.

In case the density function cannot be computed, we show that it can still be
approximated by examining the growth of the sets of good- and bad-prefixes of
the property. The density of good-prefixes of a property defines a lower bound on
the density. The density of bad-prefixes defines an upper bound on the density.
Whether a density exists for property ¢ depends on the densities of four classes
of lassos, that partition the whole space of lassos with respect to . These classes
represent lassos (u,v), where u - v is a bad-prefix for ¢, a good-prefix for ¢, or
models or non-models of ¢ where u - v is neither a good- nor a bad-prefix. We
present few ways to check the existence of the density of a linear-time property
with respect to the densities of each of these classes. To illustrate the affect
of these classes consider the property OQQa. It is clear that the rate of both
the classes of models with no good-prefix and non-models with no bad-prefix
converge to 0. This means, the upper and the lower bound of the density, deter-
mined by the classes of bad-prefix non-models and good-prefix models, meet in
the limit and the density function converges to %

For the special case of w-regular properties, the limit of the density function
can be computed algorithmically. This can be done by constructing an unam-

The Density of Linear-Time Properties 3

biguous w-automaton, that defines the property and computing the probability
of reaching an accepting strongly connected component in the automaton. Build-
ing on top of the algorithmic ideas, we also investigate the qualitative density
checking problems, i.e., we determine if the density of a property is equal to 0 or
1, and provide a complete complexity analysis, determining the lower and upper
bounds of these problems. Table [1] gives a summary on the complexity results
shown and proven in the paper.

Table 1. Results for the computational complexity of computing the density of w-
regular languages.

| H LTL non-deterministic Bﬁchi[deterministic Parity‘
N EXPTIME EXPTIME P

Vg > 0||PSPACE-compl. P-compl. NL-compl.

Vg < 1||PSPACE-compl. PSPACE-compl. NL-compl.

For some sub-classes of w-regular properties, we can even avoid the costly
construction of the automaton. We investigate a series of sub-classes and show
how to compute the density for these classes and any of their combinations. In
the case of LTL, we match syntactic classes to the introduced sub-classes and
show that the density of a boolean combination of these syntactic classes can be
reduced to the computation of the density of a much smaller formula.

Related work. In the setting of finite, rather than infinite, words, the study of
density has a long history [BIAUTOIT2I21]. For each language ¢ C X* of finite words
over some alphabet X, the density function is defined as the quotient V,(n) =
#,(n)/|X"|, where |S| denotes the cardinality of a set S and #,(n) = |[pN X",
i.e., the number of words of length n in . In 1958, Chomsky and Miller [4] showed
that for each regular language ¢, there exists an initial length ngy such that for
all n > ng, #,(n) can be described by a linear recurrence. For example, for the
language ¢ of the regular expression (ab+ baa)*, we have that #,(n) = #4(n—
2) +#4(n —3). The recursive description of #,(n) allows for a detailed analysis
of the shapes of #,(n) and V,(n) (cf. [12]). The result was later extended to
the nonambiguous context-free languages [12]. Much attention has focussed on
sparse languages, i.e., languages, where #,(n) can be bounded from above by
a polynomial [GITOJ2T]. Sparse languages can be used to restrict NP-complete
problems so that they can be solved polynomially [6]. An interesting application
of the density is to determine how well a non-regular language is approximated
by a finite automaton [7]; this is important in streaming algorithms, where the
incoming string must be classified quickly, and it suffices if the classification is
correct most of the time.

In previous work [9], we have presented automata-based algorithms for com-
puting #,(n) for safety specifications expressed in LTL. These algorithms com-
pute #,(n) for a specific property ¢ and a specific value of n, but cannot be
used to derive the convergences value of V,(n) for an entire class of properties.

4 Bernd Finkbeiner and Hazem Torfah

Faran and Kupferman have recently investigated the probability that a prefix of
a word not in ¢ is a bad prefix of ¢ [8]. This probability is used to quantitatively
determine the “safety level” of ¢. The analysis again is done with respect to the
finite words not the infinite words. A key difference to our work is that the safety
level does not give the probability of a model and does not distinguish between
properties of the same class but with different density values. Also related is
Asarin et al’s investigation of the asymptotic behavior in temporal logic [J.
The authors use the notion of entropy to show the relation between formulas
in parametric linear-time temporal logic and formulas in standard LTL as some
bounds tend to infinity.

2 Preliminaries

Linear-time Properties and Models. A linear-time property over an alphabet X
is a set of infinite words ¢ C X“. Elements of ¢ are called models of ¢. The
complement set g = X\ ¢ is called the set of non-models of .

A lasso over an alphabet X of length n is a pair (u,v) of finite words u € X*
and v € XF with |u-v| = n, that induces the ultimately periodic word u-v~. We
call u - v the base of the lasso or ultimately periodic word. An n-model for the
property ¢ over X is a lasso (u,v) € X* x 7T of length n such that the induced
ultimately periodic word w - v¥ € . We call n the bound of the n-model. The
language L, (p) for a bound n is set of n-models of ¢. Note that a model of ¢
might be induced by more than one n-model, e.g, a* is induced by (a,a) and
(€, aa). The complement language Ly, () is the set of n-non-models of ¢. We call
the linear-time property over X', whose models build up the set of all lassos over
X the universal property and denote it by T. The cardinality of a property ¢
for a bound n, denoted by #.,(n), is the size of L, (¢).

Safety and Liveness. For an infinite word 0 = ajas--- € X we denote every
prefix aj ... q; by of...i]. A finite word w = a1 ... a; € X* is called a bad-prefix
for a property ¢, if every infinite word o € X with o]...4] = w is not a model
of ¢. We call a bad-prefix w minimal, if no prefix of w is a bad-prefix for .
We denote the set of bad-prefixes of a property ¢ by Bad(y). A finite word
w=aq...q; € X*is called a good-prefix for a property ¢, if every infinite word
o € X¥ with o]...4i] = w is a model of ¢. We call a good-prefix w minimal, if w
has no prefix, that is also a good-prefix for ¢. We denote the set of good-prefixes
of a property ¢ by Good(p).

A property ¢ is a safety property if every non-model of ¢ has a bad-prefix
for ¢. A property ¢ is a liveness property if every finite word w can be extended
by an infinite word o such that w - o is a model of . A property ¢ is a co-safety
property if every model of ¢ has a good-prefix for ¢. Co-safety properties can
be either safety or liveness properties. The only property that is both liveness
and safety at the same time is the universal property T.

Linear-time Temporal Logic. We use Linear-time Temporal Logic (LTL) [18],
with the usual temporal operators Next O, Until U, and the derived operators

The Density of Linear-Time Properties 5

Release R, which is the dual operator of U, Eventually & and Globally OJ. LTL
formulas are defined over a set of atomic propositions AP. We denote the satis-
faction of an LTL formula ¢ by an infinite sequence o € (247)“ of valuations of
the atomic propositions by o |= ¢ and call o a model of ¢. For an LTL formula ¢
we define L(¢) by the set {o € (247)% | o |= ¢}. A lasso (u,v) of length n is an
n-model of an LTL formula ¢ if u - v* € L(p). If w - v* is not a model of ¢, the
lasso is called an n-non-model of .

Parity Automata. A parity automaton over an alphabet X' is a tuple A =
(Q, Qo, 5,), where @ is a set of states, Q is a set of initial states, § : Q x X — 2%
is a transition relation, and ¢ : @ — N is a coloring function. A run of A on an
infinite word w = ajag--- € X% is an infinite sequence r = qogq1--- € Q¥
of states, where qo € Qo and for each ¢ > 0, ¢;11 = 0(qi,®i11). We de-
fine Inf(r) = {¢ € Q | Vidj > i. ¢; = q}. A run r is called accepting if
max{c(q) | ¢ € Inf(r)} is even. A word w is accepted by A if there is an
accepting run of A on w.

The automaton is called deterministic if the set Qg is a singleton and for each
(g, @) € Q x X we have |[6(g, a)| < 1. The automaton is called unambiguous if for
each accepted word w there is exactly one accepting run of the automaton on w.
A parity automaton is called a Biichi automaton if the image of ¢ is contained
in {1,2}. An automaton is complete if each state has an outgoing transition for
each letter a € Y. In the paper we always consider complete automata.

A strongly connected component (SCC) in A is a strongly connected compo-
nent of the graph induced by the automaton. A strongly connected component
is called terminal if none of the states in the SCC has a transition, that leaves
the SCC. An SCC is called accepting if the highest color of the states of the SCC

is even.

3 The Density of Linear-time Properties

For a given linear-time property ¢, the density function of ¢ gives the distribu-
tion of models of ¢ for increasing bounds n.

Definition 1 (Density). The density function of a linear-time property ¢ over
an alphabet X and a bound n is the ratio between the cardinality of ¢ for n and
the number of lassos of length n over X:

Ve(n) = ng)n

The asymptotic density of ¢ (short density) is the value lim V,(n) (in case
n—oo
it exists), which we denote by VZ°.
In previous work we presented an algorithm for computing the cardinality

of safety LTL formulas for a given bound. The algorithm is doubly-exponential
in the length of the formula yet linear in the bound [9]. An algorithm based on

6 Bernd Finkbeiner and Hazem Torfah

a translation to a propositional formula is exponentially less expensive in the
formula than our algorithm, but exponentially more expensive in the bound.
With respect to counting complexity classes, the complexity of computing the
density of a property ¢ depends on the complexity of the membership test al-
lowed by the representation of ¢. Counting the number of models for a bound n
and a property given as an LTL formula has been shown to be in #P [23]. Using
these results we summarize the counting complexities of computing the density
of w-regular properties in the following theorenﬂ

Theorem 1. For an w-reqular property ¢ given by an LTL formula, a nonde-
terministic Bichi automaton, or a deterministic parity automaton, and for a
given bound n, the problem of computing V,(n) is in #P.

Proof. To show that the problem is in #P, we show that there is nondeterministic
polynomial-time Turing machine M, such that, the number of accepting runs
of the machine on a given bound n and a property ¢, is equal to the number
of n-models of ¢. We define M as follows. The machine M guesses a prefix u
and a period v of an ultimately periodic word w - v* with |u - v| = n, and checks
whether - v* satisfies ¢, which can be done polynomial time when ¢ is an LTL
formula [I3], and in logarithmic space when ¢ is given by a nondeterministic
Biichi or a deterministic parity automaton [I4]. For each n-model (u,v) of ¢
there is exactly one accepting run of M. Thus, counting the n-models of ¢ can
be done by counting the accepting runs of M on the input (n,). O

Before getting to the computational complexity of computing the density of
a given linear-time property, we illustrate what factors play a role in shaping the
density function of a property. Consider the density of the universal property T,
which is constant and equal to 1, as its cardinality is defined by #,(n) = n-|X|™.
For each bound n, we can transform every n-model of T to a (n + 1)-model by
extending the base of the n-models with one letter from X and adding one
of the now n + 1 possible loops to the new base. The number of bases for n-
models for the property T is #TT(") Thus, the number of (n + 1)-models for T
is equal to |X|- L. #+(n). According to the definition of the density function,
this means that the monotonicity of the density function of a property in some
bound n depends on whether the increase in the number of models in n is larger
or smaller than the growth factor |X| - 21,

We define the growth function of a property ¢ by ¢,(n) = % We

call the function ¢7(n) = |X| - 2L the universal growth function. The following
proposition clarifies the relation between the monotonicity of the density function
of a linear-time property ¢ and the universal growth function. Furthermore, the
proposition shows the relation between the growth function of ¢ and the growth
function of its complement .

Proposition 1. Given a property ¢ over X the following holds:

! For more on counting complexities and the counting problem for linear-time tem-

poral logic we refer the reader to [923/24]

The Density of Linear-Time Properties 7

1. ¥n. Vy(n) = Vy(n+1) if and only if <,(n) = ¢7(n)
2. Vn. Vy(n+1) > V,(n) if and only if <,(n) > ¢1(n)
3. Vn. s,(n) = s1(n) if and only if sz(n) = ¢1(n)
4. Yn. s,(n) > st(n) if and only if sz(n) < s1(n)

For any linear-time property ¢, the function #,(n) is monotonically increas-
ing. This is due to the fact that any n-model of the property ¢ can be mapped
to a (n + 1)-model of ¢, namely the one that results from unrolling the loop of
the n-model by one position. From the last proposition we read thus that the
monotonicity of the density function of ¢ at some bound n depends on the num-
ber of new (n + 1)-models, i.e., those that cannot be rolled back to n-models. A
density function, where the increase in models at some bound is higher (lower)
than the increase in all lassos (models of the universal property T) is increas-
ing (decreasing) at that bound. This in turn means that the growth factor of
the number of non-models is lower (higher) at the same bound. An oscillating
function is one, where the increase in the number of models is interchangeably
higher and lower than the increase in the total number of lassos.

Whether the density of a property exists, converges, is monotone or oscillat-
ing, depends on the densities of the following classes of lassos, that form with
respect to a given property a partition of the space of lassos. For a property ¢,
we split the set of lassos into four classes:

— Base non-models: These are non-models (u, v), where u - v € Bad(y).
— Base models: These are models (u,v), where u - v € Good(y).
— Loop non-models: These are non-models (u,v), where u - v & Bad(y).
— Loop models: These are models (u,v) where u - v & Good(y).

In Figure|ll we show how each of these classes grow over increasing bounds.
For any property ¢ and for all bounds n, the classes of base non-models and
base models increase by a factor larger or equal to ¢1(n), because any extension
of a bad-prefix remains a bad-prefix and every extension of a good-prefix also
remains a good-prefix. Following Proposition [T} this means that for any bound n,
the rates of base n-models and base n-non-models to the set of all n-lassos are
monotonically increasing and thus converging. The rate of base models defines
for each n a lower bound for the density function V,(n). Its convergence value
defines in turn a lower bound on the limit inferior of the density function. The
rate of base non-models defines an upper bound on the density function and
its convergence value is an upper bound on the limit superior of the density
function. The increase in the number of lassos of the classes of loop models and
loop non-models depends highly on the property. An extension of the bases may
result in a new bad-prefix a new good-prefix, or a base on top of which new
loop models or non-models can be obtained. This means that the rate of these
two classes to the set of all lassos might oscillate indefinitely without converging
as we show for some properties in the next section. This in turn means that
the convergences behavior of the density function of ¢ is determined by the
convergence of the rate of loop models of .

8 Bernd Finkbeiner and Hazem Torfah

—_

=

h=

z

@ im s oc
_g - max lim sup Vp
=

=%

o

S H \

S O o0

ZH ve

=S I in lim i o
g H min lim inf VX
S M

< H

base n-models

Fig. 1. The change in the density of the different classes of lassos for a linear property
o over increasing bounds n. Notice that both the rates of base n-non-models (lined
gray area) and base n-models (plain gray area) is monotonically increasing forming an
upper and lower bound on the density.

3.1 Asymptotic Density

In this section we investigate which linear-time properties have a converging
density function. In the case of finite regular properties the density does not
always exist. This follows from the fact that some regular properties allow no
models for certain bounds as we have seen in the introduction. In contrast, in
the case of w-regular properties we will show that the density always exists. For
general linear-time properties however we will see that this does not necessarily
hold when considering w-non-regular properties as shown in detail in Theorem 2}

We classify a property ¢ according to the convergence of its density function
to either: 0-convergent when Vi = 0, I-convergent when VZ* = 1, e-convergent
when V2 = e for 0 < e <1, and L-convergent when the density function is
non-convergent.

The change in the size of the different classes of lassos presented in the last
section plays a key role in the convergence behavior of a property. From the last
section we know that the rates of base models and base non-models are always
convergent. This means the convergence behavior depends on the rates of loop
models and loop non-models. For example, the property O p, has no loop models
nor loop non-models for bounds larger that 2, and the rates of these classes
converge to 0. All lassos of length greater or equal to 2 belong to one of the sets
of base models or base non-models, depending on whether the second position
of the lasso is labeled with p or not, and thus, the density of Op is determined
by the rates of base models and base non-models. The number of base models
of Op is equal to 2471 . (24P)"=1. n for n > 1, which results in a density of 3.

The rates of base models and base non-models also determine the density
of the safety property ¢ Rp over AP = {p,q}, which convergences to a value
of % The property has no loop non-models and n loop models for each bound

The Density of Linear-Time Properties 9

n, namely those where all positions are labeled with p and not labeled with gq.
Thus, the rates of loop models and loop non-models converge to 0. In the case
n .
of base-models we can count Y (247)"~%.n many base n-models, because for
i=1

each 1 < i < n, there are (247)"~" . n many base n-models which are labeled

with p and ¢ at position 7 — 1 and with only p for all positions smaller than 1,

and arbitrarily for all positions greater than i. Applying Definition[I] the density
n .

function of ¢ R p can be computed as > (4)*, which converges towards é when
i=1

n tends to infinity.

An example, where the density depends fully on the rate of loop models is
&Op. The property has neither base models nor base non-models. A lasso is a
loop model for & Op if all positions in the loop are labeled with p. For a bound n,

n .
there are > (247)"! many loop n-models (i is the position of the loop). This
i=1

n APyi—1
results in a density function equal to % which converges to 0 when n
i=1

grows to infinityP]

If none of the sets of bad- nor good-prefixes is empty, and the rate of loop
models is convergent then the density is e-convergent, because none of the rates
of base models nor base non-models to all lassos is equal to zero.

Lemma 1. The density function of a property ¢ is convergent, if and only if
the rate of loop models is convergent.

Proof. The density function can be defined as the sum of the two rates of base
models and loop models. Because the rate of base models is always convergent,
it follows that the density function is convergent if and only if the rate of loop
models is convergent. ad

With the same argumentation the rate of loop non-models plays the same role
as the one for loop models.

Lemma 2. For a given property o, the rate of loop models is convergent if and
only if the rate of loop non-models is convergent.

Proof. From Lemmal[I] we know that when the rate of loop models is convergent
then the density of ¢ is also convergent. This means that the rate of non-models
is convergent, and as the rate of base non-models is always convergent, then so
is the rate of loop non-models.

With analogous reasoning we can show that the convergence of the rate of
loop non-models implies the convergence of the rate of loop models. O

We show now an example of certain types of not w-regular properties, that
have a non-convergent rate of loop models, and thus a non-convergent density
function.

2 The formula <>Op is an example of a O-convergent liveness formula.

10 Bernd Finkbeiner and Hazem Torfah

Theorem 2. There is a linear-time property with a non-convergent density func-
tion.

Proof. We divide each of the lasso classes further into cyclic lassos, i.e., lassos,
where the loop is at the first position of the lasso, and non-cyclic lassos, which
cover the rest of lassos in a class. The property we present is a liveness property,
where the classes of base models and base non-models are empty. We show that
the rate of loop models is non-convergent and we show that the reason is that
the rate of cyclic loop models is non-convergent.

We define a property ¢ over the set of atomic propositions AP = {a} as
follows: Let ¢1,¢o... and dq,ds... be natural numbers such that ¢; < di <
ey < dy <Alassois a model of ¢ if eventually the letter {a} is encountered
at some position and there is a constant ¢ in one of the intervals [¢;, d;) for some
number ¢ € N such that from then on, {a} appears periodically every ¢ positions.

The number of non-cyclic loop n-models of ¢ is equal to [247| - #,(n — 1),
because we can extend each (n — 1)-model ¢ to an n-model by attaching any
letter from 247 to the first position of the (n — 1)-model. This means that the
growth factor of the models of ¢ is determined by the respective growth in the
size of the sets of cyclic models for each bound.

Notice that the rate of cyclic models depends strongly on the bound n. If
¢; < n < d; for some j, then we have |24P|" — 1 many cyclic models of length
n, as we only need to have at least one position labeled with {a} and the rate
of models in this case is increasing. If d; < n < c¢j41, then there are at most
|2AP|”_L%J - h, where h is the largest allowed period in n. In this case, the rate
of models is decreasing. This means that in all bounds n that belong to some
interval [c;, d;) the density is increasing, and all bounds in intervals [d;, ¢;4+1) the
density of ¢ is decreasing. We can choose the numbers ¢, ¢, ... and dy,ds ... in
a way that the density increases in ¢;4; to a value larger than the one in ¢;, and
decreases in d;11 to a value smaller than in d;. In this way, the density function
is oscillating and non-convergent. O

3.2 Density of w-Regular Properties

In this section we show how to compute the density of w-regular properties
given by non-deterministic Biichi and deterministic parity automata. In the next
section we show how these results can be adopted to compute the density of
properties given as LTL formulas.

We start by showing the relationship between the density of a property ¢
and the densities of the terminal SCCs of an automaton representing .

Lemma 3. The density of an w-reqular property ¢ given as a parity automaton
A is greater than 0 if and only if A has a reachable terminal accepting strongly
connected component.

Proof. We prove the lemma along the steps of [20]. Let A be defined over the
alphabet 247 for a set of atomic proposition AP. Let S be an accepting terminal

The Density of Linear-Time Properties 11

SCC in A with n states (remember that A is complete, thus S allows transitions
for all letters in 247 in each state). The probability of choosing a transition
with label o € 247 is equal to € = IQTlp‘ from any state in S. Let s be a state
in S. The probability of not reaching s from any other state in S in n steps
is at most 1 — €™ < 1. This means for an infinite trace in S, the probability
of not seeing s again from every position of the trace is equal to 0. Thus, the
probability of choosing an infinite run ¢ in S such that s & Inf(c) is also equal
to 0. This is in particular true for the state sya.x with the maximum color in S.
This implies that an infinite run ¢ in S with Inf(o) equal to the set of states
of S, has probability 1. Because sp.x is even, it follows that the probability of
a lasso with an accepting run in S converges to 1, when the length of the lasso
tends to infinity.

If A has a reachable terminal accepting SCC S, then it is reached by at least
one finite prefix with positive probability. The density of ¢ is then at least equal
to the probability of choosing this prefix. If A does not have a terminal accepting
SCC, then the rate of models of ¢ converges to 0, because the probability of
staying infinitely in an accepting cycle in the automaton is 0. a

Using the previous lemma we show the complexity of the following qualitative
problems for the density.

Theorem 3. Let ¢ be an w-reqular property given by a deterministic parity
automaton. The problem of checking whether VZ* > 0 is NL-complete.

Proof. As shown in Lemmal[3] to check if the density of the property given by an
automaton A is greater than 0, it suffices to check whether there is an accepting
terminal strongly connected component in .A. We choose a state ¢ of A reachable
from the initial state and apply the following procedure. Iterating over all states
¢’ of the automaton, we check if ¢’ is reachable from ¢. If yes, we check if ¢ is
reachable again from ¢’. If this is not the case, then ¢ is not a state in a terminal
SCC in A, and we choose a new state in A different than ¢ and repeat the whole
procedure for the new state. Otherwise, if for each ¢’ reachable from ¢, there is
a path leading back to ¢, then we have found a terminal SCC that contains q.
During the iteration we also save the highest color seen. If this color is even then
q is a state in a terminal accepting SCC in A. If no terminal accepting SCC is
found after iterating over all states of A, then the density is 0.

Checking whether a state is reachable from another can be done in nonde-
terministic logarithmic space (the reachability problem in automata is in NL).
Checking whether a state is not reachable from another can also be done in non-
deterministic logarithmic space (the non-reachability problem in automata is in
co-NL and NL=co-NL). In each iteration we only need to memorize the binary
encoding of the state ¢ and the current state ¢’ and the current highest color
seen so far, which require in total an encoding of no more than logarithmically
many bits in the size of the automaton.

A matching lower bound is can be proven by a reduction from a nondeter-
ministic logarithmic-space Turing machines. a

12 Bernd Finkbeiner and Hazem Torfah

Theorem 4. Let ¢ be an w-regular property given by a nondeterministic Biichi
automaton A. The problem of checking whether V22 > 0 is P-complete.

Proof. We check whether A has a terminal accepting SCC S. Finding such an
SCC can be done in polynomial time. A matching lower bound is achieved by a
log-space reduction from the circuit value problem. a

We turn now to the problem of checking if V& < 1.

Theorem 5. Let ¢ be an w-regular property given by a deterministic parity
automaton A. The problem of checking whether V> < 1 is NL-complete.

Proof. Following the idea of Theorem [3] we can check if A has a terminal non-
accepting SCC in nondeterministic logarithmic space. Because the automaton
is deterministic, any lasso that has a run in this SCC is a non-model of . If A
contains such an SCC, then the rate of non-models is greater than 0 (at least
as equal as the probability of reaching the non-accepting SCC), and thus the
density is less than 1. If no such SCC is found, then the density is equal to 1.

A matching lower bound can be shown via a reduction from a nondetermin-
istic logarithmic-space Turing machine.

Theorem 6. Let ¢ be an w-regular property given by a nondeterministic Biichi
automaton A. The problem of checking whether V7 < 1 is PSPACE-complete.

Proof. Using Safra’s construction [I7], every nondeterministic parity automaton
A can be transformed into a deterministic parity automaton D of size exponential
in the size of A. Each state of D is a Safra-tree over the states of A. The size of
a Safra-tree is equal to the size of A and we can distinguish exponentially many
Safra-trees. In Theorem [5| we presented a non-deterministic logarithmic-space
algorithm over deterministic parity automata for checking whether there is an
non-accepting terminal SCC. Instead of constructing the whole automaton D
and checking the existence of such an SCC, we will do it on the fly as follows.
We can guess a run of the automaton D by stepwise guessing Safra-trees and
checking if two succeeding trees are consistent with transition relation of D.
At some position we also guess that a current state ¢ of the run is one in a
terminal SCC. As in the procedure of Theorem [3] we check whether all successor
states ¢’ allow a path from which g can be reached again. For that we only need
logarithmic space in the size of D, thus, polynomial space in the size of A. If a
maximum color seen during the traversal of a path is even, then we have found
an accepting terminal SCC that contains the state q.

A matching lower bound can be achieved following the steps of [I5] by re-
ducing a polynomial space-bound Turing machine M and a word w to a non-
deterministic parity automaton A such that, M accept w if and only if the
density of A is smaller 1.

Using the so far presented results we show now how to compute the density.

Theorem 7. Computing the density VZ for an w-regular property ¢ can be
done in polynomial time if ¢ is given by an unambiguous parity automaton A.

The Density of Linear-Time Properties 13

Proof. To compute the density of ¢ we need to compute the density of each ter-
minal accepting strongly connected component in the automaton A. Because A
is unambiguous, it is guaranteed that no model ends in two terminal accepting
SCCs of A and thus the density is the sum of densities of all terminal accepting
SCCs. The density of an SCC is given by the probability of reaching the SCC.
Computing the probability of an SCC can be seen as a convergence problem of
a Markov chain, where the automaton A can be thought of as a Markov chain,
where the label of a transition is replaced by its probability, i.e., a probability
equal to ‘Qj‘l—}pl Both finding the terminal accepting strongly connected compo-

nents and computing their probabilities can be done in polynomial time [3]. O

4 Density of LTL Properties

In this section we reexamine the problems investigated in the last section for
properties given as LTL formulas. For any LTL property ¢ we can compute
the density by constructing an unambiguous w-automaton for ¢ and using the
algorithm given in Theorem [7] However, the construction of the automaton is
costly (exponential [2]) and can be avoided for many sub-classes of LTL.

The results for LTL are summarized below, and follow from Theorem [7] [6}
and [3] and from the fact that any LTL formula can be turned into an exponential
unambiguous parity automaton [2].

Theorem 8. 1. Computing the density V' for an w-reqular property ¢ given
as an LTL formula can be done in exponential time.

2. Checking whether V>0 for an LTL formula ¢ is PSPACE-complete.

3. Checking whether VZ* <1 for an LTL formula ¢ is PSPACE-complete.

In the following we present a series of syntactic LTL classes for which the
density can be immediately given. Using these sub-classes we show later that the
computation of the density for LTL formulas can be reduced to the computation
of the density of a much smaller LTL formula. We distinguish following syntactic
LTL classes:

— Bounded-Safety: A bounded-safety property ¢ describes a set of infinite
words, each with a prefix in a finite set I" C ¥ k for some k. A formula in
the LTL fragment with only the temporal operator O is a bounded-safety
formula.

— Invariants: An invariant property ¢ describes an unreachability property
over a bounded-safety property v and is given by the LTL fragment [J.

— Guarantee: A guarantee property ¢ is a reachability property defined over
some bounded-safety property ¥ and is given by the LTL fragment .

— Persistence: A persistence property ¢ is a co-Biichi condition defined over
a bounded-safety property ¥ and is given by the LTL fragment <>[J.

— Response: A response property ¢ is a Biichi condition defined over a
bounded-safety property and is given by the LTL fragment (< .

14 Bernd Finkbeiner and Hazem Torfah

Table 2. density for conjunctive (lower triangle) and disjunctive (upper triangle) com-
positions:

lvfmazﬂll € IOH zoluvzl

1 1 1 |1 1
1/e

€ 60/6 € €

0 (|0f 0 |0]] O

Theorem 9. 1. Fvery bounded-safety property ¢ not equivalent to false or to
true is e-convergent.

2. Every invariant property or persistence property ¢ 1is 0-convergent.

3. Bvery guarantee property or response property ¢ is 1-convergent.

4.1 Composition of LTL Properties

When given an LTL formula ¢ composed of formulas from the syntactic classes
presented above we can compute the density of ¢ using the rules given in Table[2}
The intersection of properties ¢ and 9 that are convergent to 1 results in a
new property that also has an density V., = 1. When ¢; and ¢z converge
to 0 then V° = 0. The same also holds when considering the union of the

N
properties (pflanwdz 2. In the case of e-convergent properties ¢ and y5 the density
of the intersection of the properties depends intersected properties. If both ¢,
and @y were bounded-safety properties this value depends on the size of the
intersection of characterization sets of ¢1 and 5. It can range from 0, when the
characterization sets are disjoint, to € when the properties are equivalent. When
building the union of two e-convergent properties the density can range from e
to 1. If both properties were again bounded safety properties then the density is
equal to € when ¢ and ¢, are equivalent and to 1 when their characterization
sets are disjoint. Given an LTL formula ¢ composed of the syntactic classes we
apply the rules presented in Table [2] and the results from Theorem [} until no
rule is applicable anymore. The remaining formula is a bounded safety formula
for which we apply the algorithm given in Theorem [7]

For example, consider the LTL formula over the set of atomic propositions
AP = {a,b}:

p=(aVOb)AQOOBLAa)Va)V (@ObAO(aNOb))

We start by evaluating the subformulas

Iojob/\<>(a/\Ob) = v|0:|Ob =0 and VgOO(b/\a)VQa =1

Thus the density is equal to the one of the formula (aVVOb), which is a bounded-
safety property for which we can use the algorithm in Theorem [7| and compute
the density

Z?/Ob =05+0.5%0.5=0.75

The Density of Linear-Time Properties 15

5 Discussion

With this paper, we have initiated an investigation of the density of models of
linear-time properties. Our work extends the classic results for finite words to
ultimately periodic infinite words. In comparison to finite words, the new class of
models significantly complicates the analysis; the proof techniques introduced in
this paper, in particular the analysis of classes of loop and base models and non-
models, have allowed us, however, to obtain a classification of the major property
classes according to the convergence of the density. Computing the density for
omega-regular properties can be done algorithmically, yet is very expensive. In
contrast to expensive LTL algorithms presented above, the qualitative analysis
can be obtained for free, for the syntactic fragments for the different property
types introduced in the paper (and their combinations).

The obvious next step is to exploit the results algorithmically. It may be
possible to steer randomized algorithms such as Monte Carlo model checking [11]
towards areas of the solution space where we are most likely to find a model. In
planning, the choice between exploration and backtracking in a temporal planner
could be biased towards exploration in situations with increasing probability, and
towards backtracking in situations with decreasing probability. It may also be
possible to develop approximative algorithms that replace a complicated linear-
time property with a simpler, but ultimately equivalent property, such as a parity
condition with a smaller number of colors. In similar techniques for properties
of finite words, the density of the difference language is used to verify that the
error introduced by the approximation is small [7].

A big challenge is to extend the results further to tree models and, thus,
to determine the density of branching-time properties. A first step into this
direction is made by model counting algorithms for tree models [9]. Since tree
models can be seen as implementations in the sense of reactive synthesis [22],
this line of work might also lead to a better understanding of the complexity of
the synthesis problem, and perhaps to new randomized synthesis algorithms.

References

1. Eugene Asarin, Michel Blockelet, Aldric Degorre, Catalin Dima, and Chunyan
Mu. Asymptotic behaviour in temporal logic. In LICS 2014, New York, USA,
2014. ACM.

2. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

3. Manuel Bodirsky, Tobias Gértner, Timo von Oertzen, and Jan Schwinghammer.
Efficiently computing the density of regular languages. In LATIN 200/. Springer
Berlin Heidelberg, 2004.

4. Noam Chomsky and George A. Miller. Finite state languages. Information and
Control, 1(2):91 — 112, 1958.

5. Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Form. Methods Syst. Des., 19(1), July 2001.

6. Erik D. Demaine, Alejandro Lépez-Ortiz, and J.Ian Munro. On universally easy
classes for np-complete problems. Theoretical Computer Science, 2003.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Bernd Finkbeiner and Hazem Torfah

Gerry Eisman and B. Ravikumar. Approximate recognition of non-regular lan-
guages by finite automata. In Proceedings of the 28th Australasian Conference on
Computer Science - Volume 38, ACSC ’05, Darlinghurst, Australia, 2005.

Rachel Faran and Orna Kupferman. Spanning the spectrum from safety to liveness.
In ATVA 2015, Shanghai, China, Proceedings. Springer, 2015.

Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time temporal
logic. In LATA 2014, Madrid, Spain. Proceedings. Springer, 2014.

Philippe Flajolet. Analytic models and ambiguity of context-free languages. The-
oretical Computer Science, 49(23):283 — 309, 1987.

Radu Grosu and ScottA. Smolka. Monte carlo model checking. In Nicolas Halb-
wachs and LenoreD. Zuck, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 3440 of Lecture Notes in Computer Science, pages
271-286. Springer Berlin Heidelberg, 2005.

Michael Hartwig. On the density of regular and context-free languages. In Com-
puting and Combinatorics. Springer Berlin Heidelberg, 2010.

Lars Kuhtz and Bernd Finkbeiner. LTL path checking is efficiently parallelizable.
In ICALP, volume 5556 of LNCS. Springer, 2009.

N. Markey and P. Schnoebelen. Model Checking a Path, pages 251-265. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual Symposium on Switching
and Automata Theory, SWAT ’72, Washington, DC, USA, 1972. IEEE.

Fabio Patrizi, Nir Lipovetzky, Giuseppe De Giacomo, and Hector Geffner. Com-
puting infinite plans for LTL goals using a classical planner. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011. IJCAI/AAAI 2011.

N. Piterman. From nondeterministic biichi and streett automata to deterministic
parity automata. In 21st Annual IEEE Symposium on Logic in Computer Science
(LICS’06), pages 255-264, 2006.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, pages 46-57. IEEE Computer Society, 1977.
KristinY. Rozier and MosheY. Vardi. LTL satisfiability checking. In Model Check-
ing Software. Springer Berlin Heidelberg, 2007.

Sven Schewe. Synthesis for probabilistic environments. In 4th International Sympo-
stum on Automated Technology for Verification and Analysis (ATVA 2006), pages
245-259. Springer Verlag, 2006.

Andrew Szilard, Sheng Yu, Kaizhong Zhang, and Jeffrey Shallit. Characteriz-
ing regular languages with polynomial densities. In Mathematical Foundations of
Computer Science 1992. Springer Berlin Heidelberg, 1992.

Wolfgang Thomas. Facets of synthesis: Revisiting Church’s problem. In Luca
de Alfaro, editor, FOSSACS 2009. Springer, 2009.

Hazem Torfah and Martin Zimmermann. The complexity of counting models of
linear-time temporal logic. Acta Informatica, pages 1-22, 2016.

Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189-201, 1979.

	Lecture Notes in Computer Science
	1 Introduction
	2 Preliminaries
	3 The Density of Linear-time Properties
	3.1 Asymptotic Density
	3.2 Density of -Regular Properties

	4 Density of LTL Properties
	4.1 Composition of LTL Properties

	5 Discussion

