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Abstract. We report on our experience in ontology-based data access to the
Slegge database at Statoil and share the resources employed in this use case: end-
user information needs (in natural language), their translations into SPARQL,
the Subsurface Exploration Ontology, the schema of the Slegge database with
integrity constraints, and the mappings connecting the ontology and the schema.

1 Introduction

We present the resources developed for ontology-based data access (OBDA) to the
Slegge database at the international oil and gas company Statoil using the OBDA sys-
tem Optique platform [9]. In the OBDA paradigm based on query rewriting [13], the
data remains stored in the original (relational) DBMS, while user queries are formulated
in terms of an OWL 2 QL ontology designed specifically for the end-users—rather than
directly over the database, which would presuppose detailed knowledge of the database
schema and require an assistance of an IT expert. The OBDA system makes use of the
mappings that relate the ontology vocabulary to the database schema in order to trans-
form the ontology-mediated queries into standard SQL queries, which are then executed
by the DBMS.

OBDA has been an active research area since the mid 2000s, with OBDA systems
used in a variety of projects within both academia and industry, e.g., [1,2,4,5,7,14,16].
However, full details of an industrial use cases have never been made publicly available.
The main aim of this paper is to fill this gap by publishing the following complete set
of OBDA specifications for the Slegge use case:

– the Subsurface Exploration OWL Ontology specifically designed to capture the
terms used by the geologists at Statoil when querying subsurface exploration data;

– the typical information needs (in natural language) and respective SPARQL queries;
– the schema of the Slegge SQL database;
– the R2RML mappings connecting the ontology vocabulary to the schema;
– statistics on the Slegge data (the data is private and cannot be made public).

The Slegge schema demonstrates the intrinsic complexity of industrial databases, which
is reflected in the mappings that encode the semantics of the data using, in particular,
multiple joins. The large body of queries are collected from domain experts at Statoil,
totalling 73 natural language information needs and 96 corresponding SPARQL queries.
The ontology captures the vocabulary of the SPARQL queries and describes parts of the



petroleum subsurface exploration domain represented in Slegge. As the resources we
publish include all the intricacies and peculiarities of a large industrial setup, we believe
they will be useful to the developers of OBDA technologies and to the wider semantic
technologies and information systems communities. In particular, the resources could
be used for benchmarking query rewriting and optimising engines and for development
of methods and tools for ontology and mapping construction and analysis.

The Slegge resources are available at http://purl.org/slegge and in the open
git repository https://gitlab.com/slegger/slegge-obda published with the Creative
Commons Attribution 4.0 International Public License.

Related Work. The main feature distinguishing the Slegge resources from other avail-
able OBDA specifications is that Slegge straddles the long distance between two indus-
trial artefacts. Our starting points were the Statoil geologists’ information needs (see
Section 3) and the large and complex industrial database with hundreds of tables (see
Section 4). We designed the ontology capturing the vocabulary of the needs in the con-
text of oil and gas exploration (see Section 3.1) and the complex mappings to bridge
the substantial conceptual gap between the ontology and the data (see Section 5).

Other publicly available OBDA specifications for databases with real data include
FishMark [2]3, IMDb OBDA [14]4 and the NPD FactPages [18]5. The first two have on-
tologies that are quite similar to the database schemas, and so their mappings are almost
direct (with very few joins). There are no real, natural language end-user queries; only
those based on existing SQL queries and queries invented by the authors are provided.
The NPD FactPages specification was developed from a set of web reports in tabular
format, which are generated primarily for human consumption, and a collection of sim-
ple queries that are generic for the oil and gas domain. The schema of the database
obtained from the tabular reports is not very different from the ontology, whose design
was also mostly driven by the structure of the data [17], and so again the mappings are
similar to direct ones. The specification comes with 40MB of real data, which can be
scaled up by the data pumper [12]. The Texas benchmark [15]6 and the OBDA exten-
sions of the Berlin SPARQL Benchmark (BSBM) [15,3]7 and LUBM [14,10] are all
examples with synthetic data based on existing non-OBDA benchmarks (e.g., Wiscon-
sin database benchmark for Texas). The ontologies in the first two are class taxonomies
and have no object and datatype properties; the mappings are almost direct: each SQL
query refers to a single table and has one filter in the WHERE clause. The mappings in
LUBM are also fairly simple, but more importantly, its database schema was designed
specifically for the benchmark and quite closely follows the ontology.

We begin a brief description of the Slegge resources by outlining the process of data
gathering at Statoil and the role OBDA can play in it.

3 URL: http://owl.cs.manchester.ac.uk/publications/supporting-material/fishmark
4 URL: https://github.com/ontop/ontop/wiki/Example_MovieOntology
5 URL: https://gitlab.com/logid/npd-factpages
6 URL: http://www.obda-benchmark.org/texas
7 URL: http://www.obda-benchmark.org/bsbm-obda
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2 Data Gathering at Statoil

The task of the exploration department at Statoil is to find exploitable deposits of hy-
drocarbons (oil or gas). Geoscientists in the department model the subsurface geog-
raphy by classifying rock layers according to multiple stratigraphic hierarchies using
information from a wide range of different sources. This model, which is basically a
3D map, largely determines the location of new wellbores for direct exploration and
assessment of promising areas and, if successful, for exploitation of the hydrocarbon
resource. Since wellbore drilling is a major expense,8 the quality of the model, which
depends on the availability of and the ease of accessing the relevant data, becomes a
crucial factor for efficiency of the exploration process.

We illustrate the current workflow with a typical domain expert information need,
which is an informal natural language description of a user question:

(001) In my area of interest, return the wellbores penetrating a given chronostrat unit X
and return information about the lithostratigraphy and the hydrocarbon content in
the wellbore interval that penetrates X . Also return information about other well-
bore intervals with hydrocarbon content in the wellbores with hydrocarbon in X .

To find answers, the geologist will use pre-defined queries covering parts of the in-
formation need and then integrate their results, often with the help of primitive data
management tools such as desktop speadsheet applications. The process is onerous and
error-prone: for example, the comparison of depths in a wellbore can easily go wrong
as there are multiple units, reference points and types of depth measurements that are
not directly comparable. An alternative solution would be to ask the IT department to
construct a custom SQL query. However, employing IT personnel tor the taks generally
takes from a few days to a couple of weeks9 because there are very few people with the
rare combination of intimate knowledge of the geological domain and database struc-
ture required to translate the information needs into the correct database query. (In fact,
as a quality measure, an informal policy is that, for any database, only a certain group
of people are permitted to write custom queries.)

The OBDA paradigm [13] offers a third alternative, where an ontology describes the
geologists’ vocabulary. For example, given an ontology in the W3C standard language
OWL 2 QL containing classes such as Wellbore, StratigraphicUnit, MeasuredDepth,
and properties such as name, hasUnit, hasWellboreInterval, valueInStandardUnit,
the geologist can recast information need (001) more formally in the following way:

(001/02′) Give me the names of the available wellbores with the chronostratigraphic
units and the top depths of the intervals they were found in; the depths should
be in the standard units and from standard reference points (metres along the
drill string). Also, return all lithostratigraphic units from depths overlapping
the depths at which the chronostratigraphic units were found.

And, following the structure of the ontology, the geologist can easily formalise such a

8 Personal communication cited 20–100 million euros, depending on the depth of sea, pressure,
and time taken to drill.

9 Personal communication.



query with, e.g., the visual query interface OptiqueVQS [19] of the Optique platform:

The formalised query (001/02′) is automatically translated into a SPARQL query:

SELECT ?wellbore ?chronostrat_unit ?top_md_m ?lithostrat_unit WHERE {
?w a :Wellbore; :name ?wellbore; :hasWellboreInterval ?intv.
?intv a :StratigraphicZone; :hasUnit ?cu; :hasTopDepth ?top.
?cu :name ?chronostrat_unit;

:ofStratigraphicColumn [ a :ChronoStratigraphicColumn ].
?top a :MeasuredDepth ; :valueInStandardUnit ?top_md_m.
?intv :overlapsWellboreInterval ?litho_intv.

?litho_intv :hasUnit ?lu.

?lu :name ?lithostrat_unit;

:ofStratigraphicColumn [ a :LithoStratigraphicColumn ].
}

Then, an OBDA tool such as Ontop [14,6] will use the mappings to ‘rewrite’ the
ontology-mediated query into an SQL query over the database, optimise and execute
it, returning the following results:

?wellbore ?chronostrat_unit ?lithostrat_unit ?top_md_m

"NO 1/2-1" "Jurassic" "Fisk" "1234.5"

So, in the OBDA paradigm, the geologist does not need to know the structure of the
database to create new queries. And, instead of supporting geologists directly (by trans-
lating their information needs into SQL), the IT expert has an easier task of constructing
and maintaining mappings that populate the ontology classes and properties with data
from the database. Thus, mappings explicate the IT expert’s knowledge of the database.
The reader can find the rewritten SQL query below and appreciate the extreme differ-
ences in readability and in knowledge needed to write or edit this rewriting compared
to the original SPARQL. Note also that the role of ontologies in OBDA is not only to
provide a convenient vocabulary for the user queries but also to augment the (possibly
incomplete) data with background knowledge.

SELECT
QVIEW1."IDENTIFIER" AS "wellbore",
QVIEW2."STRAT_UNIT_IDENTIFIER" AS "chronostrat_unit",
QVIEW15."STRAT_UNIT_IDENTIFIER" AS "lithostrat_unit",
QVIEW2."STRAT_ZONE_ENTRY_MD" AS "top_md_m"
FROM
"WELLBORE" QVIEW1,

"STRATIGRAPHIC_ZONE" QVIEW2,

"ROCK_FEATURE" QVIEW3,

"COMPONENT_MATERIAL" QVIEW4,



"DATA_COLLECTION" QVIEW5,

"DATA_COLLECTION_CONTENT" QVIEW6,

"ROCK_FEATURE" QVIEW7,

"MATERIAL_CLASS" QVIEW8,

"CLASSIFICATION_SYSTEM" QVIEW9,

"DATA_COLLECTION_CONTENT" QVIEW10,

"MATERIAL_CLASSIFICATION" QVIEW11,

"STRATIGRAPHIC_ZONE" QVIEW15,

"ROCK_FEATURE" QVIEW16,

"COMPONENT_MATERIAL" QVIEW17,

"DATA_COLLECTION" QVIEW18,

"DATA_COLLECTION_CONTENT" QVIEW19,

"ROCK_FEATURE" QVIEW20,

"MATERIAL_CLASS" QVIEW21,

"CLASSIFICATION_SYSTEM" QVIEW22,

"DATA_COLLECTION_CONTENT" QVIEW23,

"MATERIAL_CLASSIFICATION" QVIEW24

WHERE
QVIEW1."REF_EXISTENCE_KIND" = ’actual’ AND
QVIEW1."IDENTIFIER" IS NOT NULL AND
QVIEW1."IDENTIFIER" = QVIEW2."WELLBORE" AND
QVIEW2."STRAT_ZONE_DEPTH_UOM" = ’m’ AND
QVIEW2."STRAT_COLUMN_IDENTIFIER" IS NOT NULL AND
QVIEW2."STRAT_INTERP_VERSION" IS NOT NULL AND
QVIEW2."STRAT_ZONE_IDENTIFIER" IS NOT NULL AND
QVIEW2."STRAT_UNIT_IDENTIFIER" IS NOT NULL AND
QVIEW2."STRAT_UNIT_IDENTIFIER" = QVIEW3."DESCRIPTION" AND
QVIEW4."ENTITY_TYPE_NAME" = ’COMPONENT_MATERIAL’ AND
QVIEW3."ROCK_FEATURE_S" = QVIEW4."INCORPORATE_S" AND
QVIEW3."ROCK_FEATURE_S" = QVIEW6."COLLECTION_PART_S" AND
QVIEW5."DATA_COLLECTION_S" = QVIEW6."PART_OF_S" AND
QVIEW2."STRAT_COLUMN_IDENTIFIER" = QVIEW5."NAME" AND
QVIEW5."REF_DATA_COLLECTION_TYPE" = ’stratigraphic hierarchy’ AND
QVIEW9."KIND" = ’chronostratigraphy’ AND
QVIEW8."CLASSIFICATION_SYSTEM" = QVIEW9."NAME" AND
QVIEW7."ROCK_FEATURE_S" = QVIEW10."COLLECTION_PART_S" AND
QVIEW5."DATA_COLLECTION_S" = QVIEW10."PART_OF_S" AND
QVIEW7."ROCK_FEATURE_S" = QVIEW11."MATERIAL_S" AND
QVIEW8."MATERIAL_CLASS_S" = QVIEW11."MATERIAL_CLASS_S" AND
QVIEW2."STRAT_ZONE_ENTRY_MD" IS NOT NULL AND
QVIEW1."IDENTIFIER" = QVIEW15."WELLBORE" AND
QVIEW15."STRAT_ZONE_DEPTH_UOM" = ’m’ AND
(((QVIEW15."STRAT_ZONE_EXIT_MD" >= QVIEW2."STRAT_ZONE_ENTRY_MD") AND (QVIEW15."

STRAT_ZONE_ENTRY_MD" <= QVIEW2."STRAT_ZONE_EXIT_MD")) OR
((QVIEW2."STRAT_ZONE_EXIT_MD" >= QVIEW15."STRAT_ZONE_ENTRY_MD") AND (QVIEW2.

"STRAT_ZONE_ENTRY_MD" <= QVIEW15."STRAT_ZONE_EXIT_MD"))) AND
QVIEW15."STRAT_COLUMN_IDENTIFIER" IS NOT NULL AND
QVIEW15."STRAT_INTERP_VERSION" IS NOT NULL AND
QVIEW15."STRAT_ZONE_IDENTIFIER" IS NOT NULL AND
QVIEW15."STRAT_UNIT_IDENTIFIER" IS NOT NULL AND



QVIEW15."STRAT_UNIT_IDENTIFIER" = QVIEW16."DESCRIPTION" AND
QVIEW17."ENTITY_TYPE_NAME" = ’COMPONENT_MATERIAL’ AND
QVIEW16."ROCK_FEATURE_S" = QVIEW17."INCORPORATE_S" AND
QVIEW15."STRAT_COLUMN_IDENTIFIER" = QVIEW18."NAME" AND
QVIEW18."REF_DATA_COLLECTION_TYPE" = ’stratigraphic hierarchy’ AND
QVIEW16."ROCK_FEATURE_S" = QVIEW19."COLLECTION_PART_S" AND
QVIEW18."DATA_COLLECTION_S" = QVIEW19."PART_OF_S" AND
QVIEW22."KIND" = ’lithostratigraphy’ AND
QVIEW21."CLASSIFICATION_SYSTEM" = QVIEW22."NAME" AND
QVIEW20."ROCK_FEATURE_S" = QVIEW23."COLLECTION_PART_S" AND
QVIEW18."DATA_COLLECTION_S" = QVIEW23."PART_OF_S" AND
QVIEW20."ROCK_FEATURE_S" = QVIEW24."MATERIAL_S" AND
QVIEW21."MATERIAL_CLASS_S" = QVIEW24."MATERIAL_CLASS_S"

3 From Information Needs to Ontology and SPARQL Queries

The starting point of the Slegge use case was a list of 73 information needs collected
from end-users at Statoil over a period of four years. It turned out that 39 information
needs are beyond the scope of the Slegge database: they concern user interface config-
uration, data entry processes or require data unavailable in Slegge. The remaining 34
information needs provided the basic competency questions for creating the Subsurface
Exploration Ontology, which gives the vocabulary (ontology classes and properties) for
translating the information needs into SPARQL queries. We publish all 73 information
needs as they can be useful for the research in natural language processing and for the
future work on other data sources at Statoil.

3.1 Subsurface Exploration Ontology

The Subsurface Exploration Ontology describes parts of the petroleum subsurface ex-
ploration domain and captures the classes and properties from the user information
needs. Class Wellbore represents a path drilled through the Earth crust. Rock samples
(class Core) are normally extracted from the wellbore during drilling. Smaller samples
(CoreSample) are drilled out of the core and used for direct visual and experimental ob-
servations. A WellboreInterval is a depth interval along a wellbore, defined by its top
and bottom depths. It has two natural subclasses: Reservoir and StratigraphicZone.

Numerous measurements taken from wellbores are modelled by the taxonomy un-
der the class Measurement, with subclasses such as TrueVerticalDepth, Permeability
and FormationPressure. Each measurement provides a value in the standard and in the
original units because translation from a variety of units in the database to the standard
ones may mask suspicious values, e.g., depth 9999ft. Since wellbores are not necessar-
ily vertical, there are two types of depth for relating points along them: MeasuredDepth
refers to the length along the wellbore or drill string, while TrueVerticalDepth is the
length of the normal to the reference surface, usually the mean sea level.

To represent geographical objects and connect Slegge to other Statoil data sources,
we imported class SpatialObject (with its subclasses) from GeoSPARQL 1.110.
10 URL: http://www.opengeospatial.org/standards/geosparql
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The resulting Subsurface Exploration Ontology has 71 classes, 46 object proper-
ties and 34 data properties. The depth of the class hierarchy (without SpatialObject)
is 5, and the depth of the property hierarchy is 4. The existential depth, which mea-
sures the length of chains of labelled nulls (caused by existential quantifiers in the
ontology), is 5: for instance, every Permeability must be related by the inverse of
property hasPermeability to some CoreSample, which in turn is related by the inverse
of hasCoreSample to a Core; every Core is extractedFrom some WellboreInterval
linked by the inverse of hasWellboreInterval to a Wellbore and then to a Well via the
inverse of hasWellbore. Note, however, that the structure of the mappings and database
integrity constraints make sure that wherever there is a Permeability, the data itself
contains the required chain of length 5 as above, and so the corresponding labelled
nulls in the chase are not needed. This fact substantially simplifies query rewriting.

We incorporated some background knowledge in the ontology even if it required
constructs unavailable in OWL 2 QL such as functionality of properties and local range
constraints of the form DrillingOperation v ∀hasActivityPart.WellboreDrilling.
Fortunately, the structure of the mappings and database imply most of the non-OWL2QL
axioms, while the remaining ones are not relevant for the mappings. The smallest stan-
dard description logic capable of representing the ontology is Horn-ALCHIQ(D). Full
GeoSPARQL is a SHIF(D) ontology; however, we only require a tiny part of it, which
resides within OWL 2 QL.

3.2 SPARQL Queries

Each of the 34 information needs in the scope of Slegge was recast in SPARQL. The re-
sulting 96 SPARQL queries (some information needs are vague and can be interpreted
in SPARQL in different ways) were constructed manually, either by hand or using Op-
tiqueVQS. These queries have an average of 13 triple patterns, ranging from 3 to 30;
16 queries use OPTIONAL and 3 use FILTER NOT EXISTS. Most queries capture only
part of the corresponding information need, often because some data is not available in
Slegge. There is also a considerable overlap among the SPARQL queries because the
information needs overlap too; these mainly include different features of wellbores and
their surroundings. Many information needs, e.g., (001), contain the expression ‘for my
area of interest’, which could be interpreted as ‘restrict the query to the geographical
area I am interested in’. There is no general translation of such needs into SPARQL, but
many queries such as (001/02′) in the query catalogue use concrete geographical areas
in the North Sea identified by coordinates (in the example in Section 2, we omitted the
coordinates for simplicity).

4 Slegge Database

Slegge is an Oracle database with about 700 GB of data. The database schema was ini-
tially constructed in the late 1990s on the basis of Epicentre v2.2. The Epicentre data
model had been developed by the Petrotechnical Open Standards Consortium (POSC)
since the early 1990s and is currently maintained by Energistics.11 The most recent
11 URL: http://www.energistics.org/
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specification is Epicentre v3.0.12 It describes the logical database model and a stan-
dard way of projecting it to the physical model that can be implemented as an Oracle
database.

The main features of the Epicentre object-oriented logical model and its relational
implementation in Slegge are:

– extensive inheritance hierarchies are projected by two methods: (a) a table per sub-
type and (b) a single table for all subtypes with a discriminating column;

– denormalisation: many columns are duplicated to avoid joins when querying;
– lack of foreign keys: many relationships involve multiple tables for subtypes, and

so foreign keys would have to be conditional, which is not supported by the DBMS.

We now illustrate these design principles and their ramifications for OBDA.

Entities and Inheritance. Epicentre extensively uses inheritance hierarchies. For exam-
ple, well and wellbore are subtypes of facility; and other_facility along with a
hundred of other entities are subtypes of general_facility, which in turn is a subtype
of facility. Entities facility and general_facility are abstract and have no separate
database tables, but each of the non-abstract entities such as well and other_facility
is represented by a table in the database: WELL and OTHER_FACILITY. These tables have
columns for the normal attributes of the entity: for example, the wellbore table has
a COMPLETION_DATE column for the date when the wellbore was available for service.
Tables for subtypes ‘inherit’ columns for the attributes of the supertypes: for example,
tables for the various sorts of facilities contain R_EXISTENCE_KD_NM to specify whether
the facility is actual, planned, etc. Also, facility is a subtype of the top-level entity
e_and_p_data, and so all of these tables have a column ROW_CREATOR to record the per-
son, company or application that created this instance.

Multiple inheritance is common in Epicentre: wellbore is a subtype of facility,
and field is a subtype of pfnu (product flow network unit), but well is a subtype of both
facility and pfnu (which are incomparable). In such cases, the subtype table inherits
columns from all of its supertypes.

Instances of entities (objects) are identified by their (permanent) unique IDs, which
are surrogate primary keys in the tables: e.g., columns WELLBORE_S and WELL_S for well-
bores and wells, respectively. On the other hand, the (user-friendly) well and wellbore
identifiers (attribute identifier of the supertype entity facility) are represented in
columns WELL_ID and WELLBORE_ID, respectively; the tables for the subtypes of
general_facility inherit column GENERAL_FCL_NAME for the general facility identifier.

The projection of the Epicentre logical model (and Slegge, in particular) also im-
plements an alternative approach to dealing with hierarchies: all subtypes of an entity
can be mapped to the same database table, in which case a discriminating column con-
tains the name of the subtype of the object. For example, the four subtypes of entity
stratigraphic_marker (including itself) are represented by the same table, STRAT_MRK,
where column ENTITY_TYPE_NM distinguishes between the subtypes.

12 URL: http://w3.energistics.org/archive/Epicentre/Epicentre_v3.0/
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Properties and Denormalisation. To model composite attributes (such as 2D coordi-
nates or quantities with units of measure), Epicentre uses so-called properties, which,
like entities, have instances (auxiliary objects) and are arranged in an extensive hierar-
chy. Properties are normally mapped to database tables. However, one of the important
features of the Slegge implementation is the use of denormalised attributes: for exam-
ple, table WELL_SURFACE_PT for the locations of wells (well_surface_point entity) con-
tains columns WATER_DEPTH and WATER_DEPTH_U to store the value and the unit of mea-
sure of the water depth property, respectively. So, values are stored directly in the ‘en-
tity’ table rather than in a special table P_WATER_DEPTH for property pty_water_depth
(which is present in the database but is empty). The same applies to the azimuth and
inclination of interesting points along a wellbore: both compound attributes are mod-
elled as pairs of columns in the table WELLBORE_POINT for the entity wellbore_point
(rather than in separate tables P_AZIMUTH and P_INCLINATION). In fact, only 20 out of
the 543 property tables are non-empty in Slegge. For example, coordinates of wells’
surface points are stored in a dedicated table P_LOCATION_2D that represents the prop-
erty pty_location_2d (and not in WELL_SURFACE_PT).

Reference Entities. The Epicentre data model also features reference entities such as
ref_unit_of_measure: this entity is projected to the table R_UOM that contains acronyms
(e.g., ‘m’), identifiers (e.g., metre), descriptions (e.g., ‘The metre is the length...’)
and other information about units of measure. The primary key in such a table is then
referenced by numerous foreign keys of property and entity tables: e.g., WATER_DEPTH_U
in WELL_SURFACE_PT is among 814 columns referencing ACRONYM in R_UOM.

One-to-Many Relationships. In the Epicentre data model, relationships are represented
as attributes of entities (with collections of instances as possible values), so entities at
both end-points of a relationship have a respective attribute: one for the relationship, the
other for its inverse. One-to-many relationships are normally projected as columns in
the tables. For example, the column WELL_S in the table WELLBORE specifies the identifier
of the well containing this wellbore (recall that WELL_S is the surrogate primary key
in WELL). In this particular case, the database also contains a foreign key: WELL_S of
WELLBORE references WELL_S of WELL. However, most of such foreign keys are missing
because the subtypes are distributed over various tables. For example, the relationship
between activity and facility is represented by the column FACILITY_S in ACTIVITY.
But since various facilities are covered in a number of tables, there cannot be a simple
foreign key. In fact, ACTIVITY contains another column, FACILITY_T, that provides the
specific type of the facility it refers to (e.g., ‘WELLBORE’ or ‘WELL’), and so FACILITY_T
and FACILITY_S together identify the referenced table and the row in it, respectively.

Another complication in the Slegge implementation is denormalised attributes for
reducing the number of joins in queries: some tables contain copies of columns from
the tables they refer to. For example, table WELLBORE, along with the reference to the
primary key WELL_S of WELL, also contains a column duplicating WELL_ID from WELL.

Many-to-Many Relationships are modelled in Epicentre as association entities, which
are then projected to separate tables in the database. For example, the topological re-
lationships of the 9-intersection model [8] between instances of topological_object



(including its subtypes: field, core and facility, and so both wellbore and well)
are modelled as instances of the topological_relationship association entity, which
is represented as the table TOPOLOGICAL_REL. The table contains two pairs of columns,
PRIM_TOPLG_OBJ_S/_T and SEC_TOPLG_OBJ_S/_T, for the two arguments of a topolog-
ical relation such as ‘inside’ (reference entity ref_object_intersection provides a
list of possible topological relations). As above, the _T column identifies the table and
the _S column the row in that table; but again, there are no foreign keys in the database.

The Slegge Oracle database has 6 schemas: SLEGGE_EPI, SLEGGE_SNP, SIS_CATALOG,
MDS_COORD, ENTITLED and SLEGGE. The SLEGGE_EPI schema is a dated implementation
of the POSC Epicentre data model and consists of 1545 tables with 19 719 columns.
Note that 1141 of these tables are empty because large portions of the POSC Epicentre
data model are not used by the tools. There are 221 tables that contain 1–100 rows
(these mostly represent reference entities; even though R_UOM, for example, contains 974
rows). On the other hand, there are 9 tables with more than a million rows each. The
SLEGGE_SNP, MDS_COORD and SIS_CATALOG schemas are much smaller (21, 14 and 1 table,
respectively) and related to other applications. The schema ENTITLED has two tables
modelling user privileges.

The main SLEGGE schema integrates the other five schemas and defines 1722 views
to their tables. However, most of them (1632) contain no joins and no WHERE clauses—
these are simply used to rename tables and columns to make Slegge more compliant
with Epicentre 3.0. Two views additionally limit access in accordance with the user
privileges stored in ENTITLED. The remaining 88 views vary in complexity from two-
table joins to 31-way joins with additional WHERE and GROUP BY clauses. Many of
the views also contain ORDER BY clauses, which suggests their primary use for report-
ing and user interfaces. In addition, the SLEGGE schema contains 102 tables for various
purposes. The most interesting ingredient, however, is the five materialised views, two
of which are joins of 12 and 15 tables, respectively, while the other three use calls to
complex stored procedures (with more queries and even Java code inside).

5 Mapping Ontology to Slegge Database

One of the main challenges in the project was to map the classes and properties of the
ontology to the database objects, which required detailed knowledge of both compo-
nents. Unfortunately, the Slegge implementation does not fully comply with any par-
ticular version of Epicentre, and the important documentation on Slegge has become
either unavailable or hard to obtain at Statoil. The lack of integrity constraints (for-
eign keys)13 and abundance of denormalisation made any initial attempts at automated
schema analysis inefficient. The sheer size of the database (1727 views and 1685 tables)
only exacerbated the problem.

Our main source of information about the database schema was the 2996 queries
found in the configuration files of ProSource, a proprietary tool developed in-house and

13 Even though SLEGGE_EPI has 3112 foreign keys, 2727 of them refer to just 18 reference ta-
bles such as R_UOM; in fact, most of the remaining 385 foreign keys refer to ‘single-purpose’
reference tables such as R_OBJECT_NTRS listing topological relations.



the de facto way of accessing the Slegge database. It is worth mentioning that even the
view definitions of the SLEGGE schema often contain ProSource-generated fragments
(hand-crafting SQL queries is quite complex, error-prone, and generally avoided).

It turned out, however, that a significant number of the ProSource queries, and in
particular, the most useful ones for mapping ontology classes and properties were quite
large (up to 91 joins). The following table illustrates the distribution of the number of
tables and views per query:

# tables/views 1 2 3 4–10 11–20 21–30 31–40 41–50 51–92

# ProSource queries 1801 545 327 228 51 18 7 10 9

Such large queries are necessary to provide the geologist users with all the interest-
ing information about complex domain objects such as wellbores and their litho- and
chronostratigraphic columns. However, the ontology ‘decomposes’ such objects into a
number of classes connected by object properties, with data properties providing addi-
tional information such as names, measured values, etc. The user will then be able, in a
SPARQL query, to assemble individual triple patterns featuring classes and properties
into the required complex object.

We used the query catalogue and the vocabulary of the ontology to identify rele-
vant ProSource queries. These were then carefully analysed and split into subqueries
that match classes and properties of the ontology. In this process, we also extracted the
fragment of the database schema relevant to the obtained mappings. The integrity con-
straints (both explicitly defined in the database and those that follow from the Epicentre
specifications) were used to validate and simplify joins in the resulting queries.

As a result, we obtained an R2RML specification with 62 logical tables and 180
mapping assertions (combinations of subject, predicate and object maps); the ontology-
saturated mappings contain 324 mapping assertions. The logical tables vary from simple
tables to 6-way joins with up to 5 additional filter expression in the WHERE clause.
More detailed statistics is collected in the two tables below, where – in the number of
filters means R2RML base table and 0 means an R2RML view with a single table and
no WHERE clause but with a function call in the SELECT clause:

# tables/views 1 2 3 4 5 6

# mappings 32 8 13 2 2 5

# filters – 0 1 2 3 4 5

# mappings 8 2 24 15 8 3 2

It is also worth noting that two SQL queries in the mappings also have GROUP BY and
8 contain calls to a stored procedure.

For the purposes of testing the OBDA setup outside Statoil, we also identified a
small fragment of the database schema that supports the mappings. This fragment in-
cludes tables, views and materialised views that occur in the mappings and/or the rele-
vant integrity constraints. We also reduced the number of columns and left only those
that are required to execute the SQL queries of the mappings. The identified fragment of
the database schema consists of two schemas, SLEGGE and SLEGGE_EPI, which contain
66 tables with 379 columns, 55 views, 5 materialised views and 4 stored procedures
(functions). This schemas contain only 47 foreign keys, 11 of which refer to R_UOM and
only 3 foreign keys refer to entity tables.



6 Conclusions and Future Work

The application of OBDA technologies at Statoil dramatically reduces the amount of
time for information gathering by allowing the geologists to express their needs as
ontology-mediated queries and efficiently execute them over the database [11]. This
paper presents the complete OBDA specification of the Statoil use case and includes
the geologists’ queries, the Subsurface Exploration Ontology, the schema of the Slegge
database, and the mappings between the ontology and the database. We are planning to
develop a synthetic data generator for the OBDA specification, where the main chal-
lenge will be the faithful modelling of implicit domain constraints.

Our work on the mappings revealed a lack of tools to support the following tasks
(taking account of the database integrity constraints):

– checking whether a mapping assertion is implied by the ontology and other map-
ping assertions (e.g., as the property :overlapsWellboreInterval is symmetric,
the mapping assertions obtained by swapping the object and subject are redundant);

– checking whether a mapping assertion for a property generates all the triples of the
assertions for the subclasses of its domain/range; a negative answer (even though is
not an error) may indicate incorrect modelling if similar SQL queries are used.

Routine tasks such as checking whether IRI templates of classes/properties match could
also be automated: for example, a Protégé plugin could list all IRI templates for the
currently selected class or property (with ontology inferences taken into account). De-
veloping tool support for such reasoning tasks is an important direction of future work.
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