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Abstract. We report in the advances on stochastic automata and its
use on rare event simulation. We review and introduce an extension of
IOSA, an input/output variant of stochastic automata that under mild
constraints can be ensured to contain non-determinism only in a spuri-
ous manner. That is, the model can be regarded as fully probabilistic
and hence amenable for simulation. We also report on our latest work
on fully automatizing the technique of rare event simulation. Using the
structure of the model given in terms a network of IOSAs allows us to
automatically derive the importance function, which is crucial for the
importance splitting technique of rare event simulation. We conclude
with experimental results that show how promising our technique is.

1 Introduction

Stochastic automata were introduced by D’Argenio et al. in [10] as the semantics
basis for the compositional modeling of stochastically timed systems where the
occurrence time of events responds to continuous distributions. They can be
seen as a variant of timed automata [1] where clocks are initialized randomly
and run backwards, enabling transitions as soon as their value become 0. Based
on LOTOS [2] and other process algebras, the first ideas for compositionality
for stochastic automata were introduced through the process algebra . Thus,
stochastic automata and provide a natural generalization of generalized semi-
Markov processes (GSMP) oriented to compositional modeling.

However, this framework came with the usually unavoidable non-determinism
introduced by concurrency. This is a drawback, since, when deterministic, this
type of general models could be only analyzed through discrete event simula-
tion for the big majority of quantitative or even qualitative properties. (Model
checking stochastic automata can only provide a rough over approximation and
even though, with the usual limitation given by the state space explosion [19].)
Unfortunately, simulation and non-determinism are incompatible since simula-
tion requires that all possible execution choices are resolve through randomiza-
tion. This is partly solved in stochastic automata by the races on random clocks
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enabling the transitions. Yet situations like the same clock enabling two different
transitions may happen which yields a non-deterministic choice. Notwithstand-
ing this situation, [12] presented a first approach to the simulation of stochas-
tic automata where a scheduler indicating how the non-determinism should be
resolved is explicitly required as input.

Notice however that the scheduler is an artifact that becomes part of the
model and should be provided by an expert that understands the intricacies of
the model. This task is clearly prone to error. Therefore, we sought instead for a
way to ensure that the model is fully probabilistic (or deterministic, meaning here
that all choices are resolved randomly) by construction. In [13] we introduced
input/output stochastic automata (IOSA), a variant of stochastic automata that
splits actions into inputs and outputs and let them behave in a reactive and gen-
erative manner respectively (see [18] for the concepts of reactive and generative
transitions), following ideas proposed in [33]. Since outputs behave generatively,
we let their occurrence time be controlled by a random variable (encoded in a
clock). As inputs are reactive, they are passive and hence their occurrence time
can only depend on their interaction with outputs. Thus, IOSA combines in a
single model the two interpretations of stochastic automata (either as open or as
closed systems [8,9].) It turns out that after all components are synchronized and
the system is closed (i.e. all interactions are resolved), the whole model becomes
fully probabilistic (i.e., it does not contain non-determinism).

This variant, however, turned to be a little too restricting for modeling.
Decoupling stochastic behavior and synchronization as in [20] may simplify con-
siderably compositional modeling. Thus, in this paper we extend IOSA by allow-
ing certain non-determinism so that we can easily check whether it is spurious,
that is, any possible path on the non-deterministic choice will converge to the
same state without changing the value of the property. We do this by including
urgent or committed transitions that do not take time, allowing that they are
non-deterministic, but requesting that they are also confluent (with the standard
notion of confluence in concurrency theory [24]). Having obtained a deterministic
model, we are in conditions to simulate a closed IOSA with committed actions.

Since, nowadays, systems are required to have a high degree of resilience and
dependability, determining properties that fail with extremely small probability
in complex models can be computationally very demanding. However, standard
Monte Carlo simulation is impractical when the probability of the event under
analysis is extremely low: it will easily require an enormous amount of sampling
to obtain an acceptable confidence level of the estimated probability, in order to
compensate for the high variance induced by the rare occurrences of such event.

To reduce this considerable need for simulation runs, efficient Monte Carlo
simulation techniques have been tailored to deal with rare events. These can be
largely divided into two conceptually different techniques: importance sampling
and importance splitting methods. We focus on importance splitting techniques,
see e.g. [23,29,30]. Importance splitting works by decomposing the state space in
multiple levels where, ideally, the rare event is at the top level and the probability
of (reaching) the rare event increases for each increasing level. The estimation
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of the rare probability is obtained as the product of the estimates of the (not
so rare) conditional probabilities of moving one level up. As a consequence,
the effectiveness of this technique crucially depends on an adequate grouping
of states into levels. Importance functions are the means to assign a value to
each state so that, if perfect, such value is directly related to the likelihood
of reaching the rare event. It is desirable that a state in the rare set receives
the highest importance and the importance of a state decreases according to
the probability of reaching a rare state from it. Usually, an expert in the area
of the system provides the importance function in an ad-hoc manner. A badly
chosen function can deteriorate the effectiveness of the technique. With some
notable exceptions [4,16,21,25], automatic derivation of importance functions
has received scarce attention.

In the same way that we eliminate the need for an expertise in the modeling
of a scheduler, we have looked for techniques to automatically derive such impor-
tance functions. The overall aim thus is that the task of rare event simulation
becomes a single push button technique after the modeling of the system and
the property under study. In [4] we presented preliminary results on an effective
technique to derive automatically an importance function. The algorithm works
by applying inverse breadth first search (BFS) on the underlying graph of the
stochastic process, labeling each state with the shortest distance to a rare state.
The importance of each state is then defined as the difference between the maxi-
mum distance and its actual distance. This technique still requires a finite graph
which fits in the computer memory. Unfortunately such graph grows exponen-
tially with the number of components in the model of the system. To overcome
this problem, in [5] we improve on this technique by obtaining the importance
function in a compositional manner. We consider the system modeled as a net-
work of IOSAs. The technique then works by applying the previous method
per component, previous analysis on how the local states relate to the property
under study, and the final importance function is obtained by composing the
modular functions. Contrarily to the first technique, this way of calculating the
importance function grows linearly with the number of modules that conform
the system model. In this paper, we also report on these techniques and show
experimental studies that demonstrate how promising our ideas are.

2 Input/Output Stochastic Automata

Stochastic automata [8–10] use continuous random variables called clocks to
observe the passage of time and control the occurrence of events. This variables
are set to a value according to their associated probability distribution, and as
time evolves, they count down at the same rate. When a clock reaches zero, it
may trigger some action. This allows the modeling of systems where events occur
at random continuous time stamps.

Following ideas from [33], input/output stochastic automata (IOSA for short)
restrict stochastic automata by splitting actions into input and output actions
which will act in a reactive and generative way respectively [18]. This splitting
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reflects the fact that input actions are considered to be controlled externally,
while output actions are locally controlled. Therefore, we consider the system
input enabled. Moreover, output actions could be stochastically controlled or
instantaneous. In the first case output actions are controlled by the expiration
of a single clock while in the second case the output actions take place as soon as
the enabling state is reached. We called these instantaneous actions committed.
A set of restrictions over IOSA will ensure that, almost surely, no two non
committed outputs are enabled at the same time.

Definition 1. An input/output stochastic automaton with committed actions
(IOSA for short) is a structure (S,A, C,−→, C0, s0), where S is a (denumerable)
set of states, A is a (denumerable) set of labels partitioned into disjoint sets of
input labels AI and output labels AO, from which a subset Aco of them are marked
as committed, C is a (finite) set of clocks where each x ∈ C has associated a con-
tinuous probability measure μx on R s.t. μx(R>0) = 1, −→ ⊆ S × 2C × A × 2C × S
is a transition function, C0 is the set of clocks that are initialized in the initial
state, and s0 ∈ S is the initial state.

In addition, a IOSA should satisfy the following constraints, where we write

s
C,a,C′

−−−−−→ s′ instead of (s, C, a, C ′, s′) ∈ −→:

(a) If s
C,a,C′

−−−−−→ s′ and a ∈ AI ∪ Aco, then C = ∅.
(b) If s

C,a,C′
−−−−−→ s′ and a ∈ AO \ Aco, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−−→ s1 and s

{x},a2,C2−−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) If s
{x},a,C−−−−−→ s′ then x ∈

⋃
safe(s), where safe is the least fixed point of F

defined as:

F(X)(s) = {C0 | s = s0} ∪ {C′ ∪ ({y | ŝ {y}, ,−−−−−→ } \ C) | ŝ C,a,C′
−−−−−→ s ∧ a /∈ Aco}

∪ {C ∪ C′ | ŝ ∅,a,C−−−−→ s ∧ a ∈ Aco ∧ C′ ∈ X(ŝ)}

(e) For every a ∈ AI and state s, there exists a transition s
∅,a,C−−−−→ s′.

(f) For every a ∈ AI , if s
∅,a,C′

1−−−−−→ s1 and s
∅,a,C′

2−−−−−→ s2, C ′
1 = C ′

2 and s1 = s2.

The occurrence of a transition is controlled by the expiration of clocks.

s
C,a,C′

−−−−−→ s′ indicates that there is a transition from state s to state s′ that
can be taken only when all clocks in C have expired and, when taken, it triggers
action a and sets all clocks in C ′ to a value sampled from their associated proba-
bility distribution. We write to replace parameters when they are not relevant.

These restrictions ensure that any closed IOSA without committed actions
is deterministic [13]. An IOSA is closed if all its synchronizations have been
resolved, that is, the IOSA resulting from a composition does not have input
actions (AI = ∅).

Restriction (a) is two-folded: on the one hand, it specifies that input actions
are reactive and their time occurrence can only depend on the interaction with
an output, on the other hand, committed output actions must occur as soon as
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the state enables them. The difference will be more clear when we define the
concrete semantics. Restriction (b) specifies that each non-committed output is
locally controlled and has a single associated clock which controls its occurrence.
Restriction (c) ensures that different non-committed output actions leaving the
same state cannot be controlled by the same clock. Restriction (e) ensures input
enabling. Restriction (f) determines that IOSAs are input deterministic. There-
fore, the same input action in the same state can not jump to different states,
nor set different clocks.

Finally, restriction (d) restricts enabling clock x to clocks that have not yet
expired when reaching s. That is, either x has been reset during the transition
to s, or during a path of committed transitions reaching s, or x is not used as
enabling clock of a transition to s but it is an enabling clock on the immediately
preceding state. By means of the least fixed point of F we are able to accumulate
clocks that are reset along paths of committed transitions. Furthermore, this
restriction allows a clock x to be an enabling clock at an initial state s if x is an
initial clock, i.e. x ∈ C0.

Note that since clocks are set by sampling from a continuous random vari-
ables, the probability that the values of two different clocks are equal is 0. This
fact along with restriction (c) and (d) guarantees that almost never two different
non-committed output transitions are enabled at the same time.

In the following we define parallel composition of IOSAs. Since we intend
outputs to be autonomous (or locally controlled), we do not allow synchroniza-
tion between them. Besides, we need to avoid name clashes on the clocks, so
that the intended behavior of each component is preserved and moreover, to
ensure that the resulting composed automaton is indeed an IOSA. Furthermore,
synchronizing IOSAs should agree on committed actions in order to ensure their
immediate occurrence. Thus we require to compose only compatible IOSAs.

Definition 2. Two IOSAs I1 and I2 are said to be compatible if they do not
share output actions nor clocks, i.e. AO

1 ∩AO
2 = ∅ and C1∩C2 = ∅, and moreover

they agree on committed actions, i.e. A1 ∩ Aco
2 = A2 ∩ Aco

1 .

Definition 3. Given two compatible IOSAs I1 and I2, the parallel composition
I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s

1
0||s20) where (i) AO = AO

1 ∪ AO
2 ,

(ii) AI = (AI
1 ∪ AI

2) \ AO, (iii) Aco = Aco
1 ∪ Aco

2 , (iv) C = C1 ∪ C2, and (v)
C0 = C1

0 ∪ C2
0 , and −→ is the smallest relation defined by rules in Table 1 where

we annotate s||t instead of (s, t).

Table 1. Parallel composition on IOSA
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It can be proven that the parallel composition preserves IOSAs. That is, the
parallel composition of two IOSAs is also an IOSA.

Fig. 1. Confluence in IOSA.

Following ideas from Milner [24] we say that an
IOSA is confluent with respect to actions a and b
if the occurrence of one of them does not prevent
the other one from occurring in the future. More
precisely, an IOSA I is confluent with respect to
committed actions a and b in A if for every state s
in S we can complete the diagram from Fig. 1.

Notice that confluent actions do not alter the
stochastic behavior of the system: by considering a
and b silent actions (i.e. a = b = τ with τ interpreted as in Milner’s work [24])

the IOSA of Fig. 1 behaves like the single transition s0
∅,τ,C1∪C2−−−−−−−→ s3. Thus, the

non-determinism introduced by confluent committed actions is spurious.
It can be shown that parallel composition preserves confluence. Thus, if all

IOSA components are confluent for all committed action, so is their parallel
composition.

3 Semantics of IOSA

The semantics of IOSA is defined in terms of non-deterministic labeled Markov
processes (NLMP) [14,32]. A NLMP is a generalization of probabilistic transition
systems with continuous domain. In particular, it extends LMP [15] with internal
non-determinism.

The foundations of NLMP is strongly rooted in measure theory, hence we
recall first some basic definitions. Given a set S and a collection Σ of sub-
sets of S, we call Σ a σ-algebra iff S ∈ Σ and Σ is closed under complement
and denumerable union. We call the pair (S,Σ) a measurable space. A func-
tion μ : Σ → [0, 1] is a probability measure if (i) μ(

⋃
i∈N

Qi) =
∑

i∈N
μ(Qi)

for all countable family of pairwise disjoint measurable sets {Qi}i∈N ⊆ Σ, and
(ii) μ(S) = 1. In particular, for s ∈ S, δs denotes the Dirac measure so that
δs({s}) = 1. Let Δ(S) denote the set of all probability measures over (S,Σ).
Let (S1,Σ1) and (S2,Σ2) be two measurable spaces. A function f : S1 → S2 is
said to be measurable if for all Q2 ∈ Σ2, f−1(Q2) ∈ Σ1. There is a standard
construction by Giry [17] to endow Δ(S) with a σ-algebra as follows: Δ(Σ) is
defined as the smallest σ-algebra containing the sets ΔB(Q) .= {μ | μ(Q) ∈ B},
with Q ∈ Σ and B ∈ B([0, 1]), where B([0, 1]) is the usual Borel σ-algebra on
the interval [0, 1]. Finally, we define the hit σ-algebra H(Δ(Σ)) as the minimal
σ-algebra containing all sets Hξ = {ζ ∈ Δ(Σ) | ζ ∩ ξ �= ∅} with ξ ∈ Δ(Σ).

Definition 4. A non-deterministic labeled Markov process (NLMP for short)
is a structure (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L we have that Ta : S → Δ(Σ) is measurable from Σ to
H(Δ(Σ)).
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The formal semantics of an IOSA is defined by a NLMP with two classes of
transitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and another describing the
time steps, that only records the passage of time synchronously decreasing the
value of all clocks. For simplicity, we assume that the set of clocks has a particular
order and their current values follow the same order in a vector.

Definition 5. Given an IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN},
its semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

– S = (S ∪ {init}) × R
N , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

– Tinit(init,v) = {δs0 ×
∏N

i=1 μxi
},

– Ta(s,v) = {μv,C′,s′ | s
C,a,C′

−−−−−→ s′,
∧

xi∈C v(i) ≤ 0}, for all a ∈ A, where
μv,C′,s′ = δs′ ×

∏N
i=1 μxi

with μxi
= μxi

if xi ∈ C ′ and μxi
= δv(i) otherwise,

and
– Td(s,v) = {δs ×

∏N
i=1 δv(i)−d} if s �b−→ for all committed b ∈ AO ∩ Aco and

0 < d ≤ min{v(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}, and Td(s,v) = ∅
otherwise, for all d ∈ R≥0.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode the
random initialization of all clocks (it would be sufficient to initialize clocks in
C0 but we decided for this simplification). Such encoding is done by transition
Tinit. The state space is structured with the usual Borel σ-algebra. The discrete
step is encoded by Ta , with a ∈ A. Notice that, at state (s,v), the transition

s
C,a,C′

−−−−−→ s′ will only take place if
∧

xi∈C v(i) ≤ 0, that is, if the current values of
all clocks in C are not positive. For the particular case of the input or committed
actions this will always be true. The next actual state would be determined
randomly as follows: the symbolic state will be s′ (this corresponds to δs′ in
μv,C′,s′ = δs′ ×

∏N
i=1 μxi

), any clock not in C ′ preserves the current value (hence
μxi

= δv(i) if xi /∈ C ′), and any clock in C ′ is set randomly according to its
respective associated distribution (hence μxi

= μxi
if xi ∈ C ′). The time step

is encoded by Td(s,v) with d ∈ R≥0. It can only take place at d units of time
if there is no output transition enabled at the current state within the next d
time units (this is verified by condition 0 < d ≤ min{v(i) | ∃a∈AO, C ′⊆C, s′∈S :

s
{xi},a,C′

−−−−−−→ s′}). In this case, the system remains in the same symbolic state
(this corresponds to δs in δ−d

(s,v) = δs ×
∏N

i=1 δv(i)−d), and all clock values are
decreased by d units of time (represented by δv(i)−d in the same formula). Note
the difference from the timed transitions semantics of pure IOSA [13]. This
is due to the maximal progress assumption, which forces to take committed
transition as soon as they get enabled. We encode this by not allowing to make
time transitions in presence of committed actions, i.e. s �b−→ for all committed

b ∈ AO ∩ Aco (thus Td(s,v) = ∅ whenever s
C,b,C′

−−−−−→ s′ with b ∈ AO ∩ Aco.)
Instead, notice the patient nature of a state (s,v) that has no output enabled.
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That is, Td(s,v) = {δs ×
∏N

i=1 δv(i)−d} for all d > 0 whenever s �b−→ for all output
action b ∈ AO.

In a similar way to [13], it is possible to show that P(I) is indeed a NLMP,
i.e. that Ta maps into measurable sets in Δ(B(S)), and that Ta is a measurable
function for every a ∈ L.

4 Rare Event Simulation

Assuming that the IOSA is closed and confluent on all committed actions and
it does not contain loops of only committed transitions, from the semantics of
IOSA (Definition 5) we can extract an algorithm for discrete event simulation
which we give in Fig. 2.

Given that the IOSA is confluent for committed actions, the arbitrary choice
of a committed transition in line 6 is irrelevant since, after finishing the while
loop of line 5, the same set of clocks will be sampled whichever path of committed
transitions is taken. Moreover, the while loop is ensured to finish since no loop
of committed transition is allowed. Also, the restrictions imposed by Definition 1
guarantee the uniqueness of the transition in line 11 [13].

When a parameter is estimated using the usual Monte Carlo simulation (as
described in Fig. 2), the speed and overall efficiency of the method is highly
dependent on the precision required for the estimate. Confidence intervals are
commonly used to convey a notion of how far the produced estimate may be
from the actual value. As a general rule, whichever the confidence interval con-
struction method, the simulations “length” grows with the tightness desired for

Fig. 2. Simulation of a closed confluent IOSA
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the interval. In particular several rare event scenarios are known to require a
number of samples which grows exponentially on the model size [22].

Importance splitting (IS for short) aims to speed up the occurrence of a rare
event without modifications on the system dynamics (see [23] and references
therein.) The general idea in IS is to favor the “promising runs” that approach
the rare event by saving the states they visit at certain predefined checkpoints.
Replicas of these runs are created from those checkpoint states, which continue
evolving independently from then on. Contrarily, simulation runs deemed to
steer away from the rare event are identified and killed, avoiding the use of
computational power in fruitless calculi. The likelihood of visiting a goal state
from any other state s is called the importance of s. Variations in such importance
determine when should a simulation run be split or killed, as the importance
value crosses some given thresholds up or down, respectively.

We focus on the RESTART method, a version of IS with multiple thresholds,
fixed splitting and deterministic discards of unpromising simulations [26,28–31].
A RESTART run can be depicted as in Fig. 3 where the horizontal axis represents
the simulation progress and the vertical axis the importance value of the current
state. The run starts from an initial state and evolves until the first threshold
T1 is crossed upwards. This takes the path from zone Z0 below threshold T1

into zone Z1 between T1 and T2. As this happens the state is saved and s1 − 1
replicas or offsprings of the path are created. See A in Fig. 3, where the splitting
for T1 is s1 = 3. This follows the idea of rewarding promising simulations: up-
crossing a threshold suggests the path heads towards a goal state. From then
on the s1 simulations will evolve independently. As they continue, one of them
may hit the upper threshold T2, activating the same procedure: s2 −1 offsprings
are generated from it and set to evolve independently. See B in Fig. 3; here, the
splitting is s2 = 2.

Fig. 3. RESTART importance splitting

However, it could also happen that
some simulation hits T1 again, mean-
ing the path is leading downwards. This
simulation steers away from the goal set
and RESTART deals with it discarding
the run right away (see C in Fig. 3). In
each zone Zi there exists nonetheless
an original simulation, which crossed
threshold Ti upwards generating the
si − 1 offsprings. This run is allowed to
survive a down-crossing of threshold Ti

(see D in Fig. 3).
In this setting all simulations reaching a goal state went through the repli-

cation procedure, which stacked up on every threshold crossed. Simply counting
these hits would introduce a bias, because the relative weight of the runs in
upper zones decreases by an amount equivalent to the splitting of the thresh-
olds. In consequence, each rare event observed is pondered by the relative weight
of the simulation from which it stemmed. If all the goal states exist beyond the
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uppermost threshold like in Fig. 3, then it suffices to divide the observed quan-
tity of rare events by SPLITMAX

.=
∏n

i=1 si. Otherwise more involved labeling
mechanisms are needed.

In this work we study transient and long run properties. Transient properties
are used to calculate the probability of reaching a set G of goal states before
visiting any reset state from the (disjoint) set R. (For simulation purposes the
probability of reaching a state in G�R has to be 1.) Following PCTL, we denote
this probability by P(¬RUG). Long run analysis focuses on the quantification
of a property once the system has reached an equilibrium. In particular, the
steady state probability of a set G of goal states is the portion of time in which
any state in G is visited in the long run. Using CSL notation, we write S(G).

5 Automatic Derivation of the Importance Function

Notice that a simulation using importance splitting is entirely guided by the
importance function which defines the importance of each state. This function
conveys the states where the simulation effort should be intensified. Importance
functions are defined in most situations in an ad-hoc fashion by an expert in
the field of the particular system model. With a few exceptions in some specific
areas [16,21,25,35] automatic derivation of importance functions is still a novel
field for general systems and this has been our later concern [3–5].

Fig. 4. Basic importance function derivation

Consider a single IOSA and
any of the properties P(¬RUG) or
S(G). The rare event is precisely the
set G of goal states. In [4], we pro-
pose a distance based on the length
of the shortest path on the IOSA
leading to a state in G: a state s is
more important than other state s′

if its shortest path to a state in G is
shorter than the shortest path of s′.
This can be implemented with the
help of a breadth-first search algo-
rithm that follows the backwards
direction of the transitions in the
given IOSA. The algorithm, which
is given in Fig. 4, has complexity
O(n · k), where n is the size of the
state space and k is the branching
degree of the underlying graph of
the IOSA.

Using this strategy one can indeed obtain in very short computational time a
good importance function to use with the IS technique of choice [4]. The thresh-
olds can then be selected either arbitrarily, using e.g. some fixed approach (“set
one every three importance values”), or adaptively by means of an algorithm
that exercises the model dynamics [6,7].
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However, this approach does not scale. The BFS algorithm requires an
explicit representation of the state space of the composed IOSA (and actually
of the whole adjacency matrix), which grows exponentially with the number of
modules involved in the composition. This is clearly not in the spirit of simula-
tion which scales nicely since it only requires to save only the current state been
explored.

Taking advantage of the compositional nature of IOSA, in [5] we presented
a compositional approach to automatically produce importance functions. The
solution reuses our previous idea:

(i) identify the set Gi of local states in each IOSA component Ii that are part
of the global set G of goal states,

(ii) apply the algorithm of Fig. 4 in each component Ii to obtain a local impor-
tance function fi, and

(iii) compose the family of functions {fi}i to obtain the (global) importance
function f .

This brings two challenges: obtaining the local goal states sets Gi and composing
the family of functions {fi}i to obtain the importance function f .

For the first challenge, we require that the set G of goal states is given in terms
of a propositional formula in disjunctive normal form (DNF ), i.e. a disjunction
of clauses, each of which is a conjunction of literals (i.e. of atomic propositions
or negated atomic propositions). As a restriction, we impose that each atomic
proposition can only be changed or tested in a single IOSA component. This
approach imposes no restriction on the description of the rare event, since any
propositional formula can be equivalently written in DNF.

To obtain the set Gi of local goal states for component Ii, we “project” the
DNF formula

∨
n∈N

∧
m∈Mn

�nm defining G as follows. For each n ∈ N define
Ln = {�nm | m ∈ Mn and �nm contains a proposition in Ii}. Then, define the
local goal DNF formula by

∨
{
∧

Ln | n ∈ N and Ln �= ∅} which defines the set
Gi of states of Ii in which such a formula is valid.

For composing the family of functions {fi}i into the importance function f ,
we have experimented with several proposals. One option is to let the user settle
the matter via an ad-hoc choice. He would have to provide an algebraic expression
using the local importance which would be used at every step of the simulation
to combine the local importance values. For example, consider a system of three
IOSAs composed in parallel. If s|i denotes the projection of the global state s into
the local state of component Ii, possible definitions for f are f(s) = f1(s|1) +
f2(s|2) + f3(s|3) or f(s) = max (0.3f1(s|1) + 0.7f2(s|2), f3(s|3)).

Since we request the properties to be expressed in DNF, we could exploit the
structure of the formula to identify specific arithmetical operands or even alge-
braic structures to associate to each logical operand. We are currently investigat-
ing a way to automatically map the disjunctions and conjunctions to their best-
match arithmetical counterparts. Our last studies are leading us towards the use
of semi-rings such as (max,+) and (+,*), which could be thought of as naturally
corresponding to the (∨, ∧) structure of DNF formulas. For example, consider a
system of three IOSAs composed in parallel, where pi is a propositional formula
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in the component Ii. If the goal DNF formula is (p1 ∧ p2)∨ (p1 ∧ p3), the impor-
tance function could be defined by f(s) = (f1(s|1) ∗ f2(s|2)) + (f1(s|1) ∗ f3(s|3))
or f(s) = max((f1(s|1) + f2(s|2)), (f1(s|1) + f3(s|3))).

As a final remark notice that using the product to combine local importance
functions could lead to problems whenever a null importance value is encoun-
tered. As a workaround in such cases the functions where updated after construc-
tion, replacing every importance value i with 2i (e.g. the values 0, 1, 2, . . . map
into 1, 2, 4, . . .) This solved the issue and set the computed importance values
further apart, with interesting consequences in the IS simulations.

6 Experimental Results

We have developed the software tool FIG, which implements the compositional
approach to multilevel splitting described above. It is written in C++ and is a
standalone software. FIG stands for Finite Improbability Generator as a homage
to Douglas Adam’s masterpiece and it is freely available at http://dsg.famaf.
unc.edu.ar/fig.

In the following we report several case studies that validate our approach.
All experiments were run in a computer with a 12-cores 2.40 GHz Intel Xeon E5-
2620v3 processor, and 128 GiB 2133 MHz of available DDR4 RAM. More details
of these and other case studies can be found in [3].

Tandem Queue. This system consists of a Jackson tandem network with two
sequentially connected queues, where the rates of arrival, first service and second
service are respectively (λ, μ1, μ2) = (3, 2, 6), and for which transient and steady-
state properties were evaluated.

Notice this tandem queue is Markovian. Therefore, we were able to validate
that the results yielded by FIG because the IOSA model agree with those yielded
by PRISM for an equivalent model written in the PRISM language. (We remark
that the FIG input language is very much alike the PRISM input language.)

For this case study, we have performed transient and steady state analysis.
For the transient analysis, the property of interest is P(q2 > 0U q2 = C), i.e. the
likelihood of observing a saturated second queue before it becomes empty, which
we estimate starting from the state (q1, q2) = (0, 1). We tested maximum queue
capacities C ∈ {8, 10, 12, 14}, for which the values calculated with PRISM are
respectively 5.62e−6, 3.14e−7, 1.86e−8, and 1.14e−9. Estimations were set to
achieve 90% confidence interval with 20% of relative error. The execution time-
out was 2.5 h, which FIG converged for each configuration producing intervals
containing the values reported by PRISM.

The average of the wall times measured in three experiments are shown in
Fig. 5. Three different importance functions were tested in the importance split-
ting simulations. The function denoted amono was automatically built by FIG
using the monolithic approach of [4]. Instead, acomp stands for the function built
following the compositional strategy, which in this case employed summation
as composition operand (i.e., the global function is the summation of the local
functions). The third importance function tested with RESTART was one of the

http://dsg.famaf.unc.edu.ar/fig
http://dsg.famaf.unc.edu.ar/fig
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Fig. 5. Times for the transient analysis of the tandem queue

best known ad-hoc candidates viz. counting the number of packets in the sec-
ond queue, which we denote q2. Standard Monte Carlo simulations are denoted
nosplit. In Fig. 5, we display one chart per splitting value, with the outcomes of
the nosplit simulations repeated in all four charts. The maximum queue capacity
C, tuned to variate the rarity of the event, spans along the x-axis.

Regarding long run simulations we are interested in the property S(q2 = C),
i.e. the proportion of time that the second queue spends in a saturated state. We
tested maximum queue capacities C ∈ {10, 13, 16, 18, 21}, for which the values
calculated with PRISM are respectively 7.25e−6, 2.86e−7, 1.12e−8, 1.28e−9,
and 4.94e−11.

Estimations were set to achieve 90% confidence with 20% of relative error and
expected to converge within 6 h of wall time execution. Again we corroborated
that these estimations converged to the values yielded by PRISM. The same
importance functions than in the transient case were employed.

The results obtained from an average among three experiments are presented
in Fig. 6, following the same format than in the transient case.

Triple Tandem Queue. Consider a non-Markovian tandem network operating
under the same principles than the previous tandem queue, but consisting of
three queues with Erlang-distributed service times. The shape parameter α is
the same for all servers, but the scale parameters {μi}3i=1 differ from one queue
to the next. Arrivals into the system are exponential with rate λ = 1.
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Fig. 6. Times for the steady-state analysis of the tandem queue

The long run behavior of this non-Markovian triple tandem queue was studied
in [26] starting from an empty system. The shape parameter is α ∈ {2, 3} in all
queues and the load at the third queue is kept at 1/3. This means that the scale
parameter μ3 in the third queue takes the values 1/6 and 1/9 when α is 2 and
3 respectively. The scale parameters μ1 and μ2 of the first and second servers,
as well as the thresholds capacity C at the third queue, are chosen to keep the
steady-state probability in the same order of magnitude for all case studies.

The property of interest is the steady-state probability of a saturation in the
third queue, i.e. S(q3 = C). Following the same approach from [26] we choose
the parameters so that the estimated value is in the order of 5 · 10−9. Thus the
values of (α, μ1, μ2, C) for the six case studies i–vi are respectively (2, 1/3, 1/4, 10),
(3, 2/3, 1/6, 7), (2, 1/6, 1/4, 11), (3, 1/9, 1/6, 9), (2, 1/10, 1/8, 14), and (3, 1/15, 1/12, 12).

Estimations were set to achieve 90% confidence interval with 20% of rel-
ative error and expected to converge within 4 h of wall time execution. Four
importance functions were tested in the importance splitting simulations: the
monolithic (amono) and compositional (acomp) functions which FIG can build
automatically, using summation as composition operand for acomp; an ad-hoc
function which just counted occupation in the third queue (q3); and the ad-hoc
approach from [26] (denoted jva), which also considers the occupancy in the
other queues with weight coefficients specific to each case, taking values in the
interval [0.2, 0.9].
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Fig. 7. Times for the steady-state analysis of the triple tandem queue

Results are presented in Fig. 7. This experiment was also run three times; the
values in the plots show the average of the convergence times measured. Case
studies i–vi span along the x-axis of each plot.

Oil Pipeline. Consider a consecutive-k-out-of-n: F system (C(k, n : F )). This
consists of a sequence of n components ordered sequentially, so that the whole
system fails if k or more consecutive components are in a failed state. For a more
down-to-earth mental picture consider an oil pipeline where there are n equally
spaced pressure pumps. Each pump can transport oil as far as the distance of k
pumps and no further. Thus if k > 1, the system has certain resilience to failure
and remains operational as long as no k consecutive pumps have failed.

Several generalizations exist to the original setting; we are interested in the
non-Markovian and repairable systems analyzed in e.g. [27,34]. Those works
assume the existence of a repairman which can take one failed component at a
time and leave it “as good as new”, after a log-normal distributed repair time
has elapsed [34]. In particular [27] consider also the existence of non-Markovian
failure times (namely, sampled from the Rayleigh—or Weibull—distribution)
and measure the steady-state unavailability of the system.

We will limit here to the oil pipeline of the type C(5, 20 : F ), i.e. where
there is a total of n = 20 pressure pumps, and k = 5 consecutive failed pumps
cause a general system failure. This was the most difficult case we run, where the
estimated probability are in the order of 2.62e−9 and 7.49e−9 for the exponen-
tial and Rayleigh, case respectively. Other parameters are studied in [3]. In this
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Fig. 8. Exponential-failures oil pipeline; intervals precision for 3 h timeout

Fig. 9. Rayleigh-failures oil pipeline; intervals precision for 3 h timeout

setting, the steady-state system unavailability is given by the property query:
S(

∨15
i=1(bi ∧ bi+1 ∧ bi+2 ∧ bi+3 ∧ bi+4)), where bi indicates that component i is

broken.
Also, we present a variation of the original model by changing the policy of

repair, since the policy used in [27] is quite singular and cannot be modeled with
FIG input language. Instead, we chose a priority policy where lower numbered
components have more priority than higher numbered components.

The large number of components of this model prevents us to use the mono-
lithic approach to derive the important function. Therefore the automatic impor-
tance functions tested are only compositional. The näıve strategy of compos-
ing the local functions with summation as composition operand is denoted ac1.
Similarly, ac2 uses product as composition operand and an exponentiation post-
processing. Taking advantage that the propositional formula is in DNF, we use
the (max,+) and (+, ∗) semirings composition strategies and we denote them
by ac3 and ac4 respectively. Last, ah implements an ad-hoc function with the
(max,+) semiring, using the variables of the modules rather than the local
importance functions which the tool could compute if requested. This is the
approach followed in [27] and denoted Φ(t) .= cl − oc(t) in that work.

Due to the fact that this model takes too long to simulate, we decided to run
it for 3 h and compare the resulting precision of the intervals for a confidence of
90%. We run three independent experiments. The results are presented in Figs. 8
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and 9. These values are the average of the precision of the intervals obtained from
the three experiments run; the deviation is shown as whiskers on top of the bars.
We observe that, in this case study, the normal Monte Carlo was still competitive
and postpone further discussions for the next section.

7 Concluding Remarks

In this paper we have reported on the continuation of the work on stochastic
automata and its analysis that took place under Ed Brinksma’s supervision
during the late 90s [8,10–12]. We presented here a new variant of stochastic
automata, named IOSA, amenable for simulation, and moreover, we reported
on our efforts on obtaining a fully automatic implementation of the importance
splitting technique for rare event simulation.

Our technique on automatically deriving importance function has proven
highly competitive when compared with known good ad-hoc importance func-
tions. This is evident in all experimental results reported in the previous section
as well as in [3–5]. Yet, we know that we need to improve the FIG tool. Particu-
larly, we need a better automatic construction of the thresholds where splitting
is produced. We are currently using known techniques [6,7] that are not always
producing good results when combined with our method of deriving importance
function and the RESTART method. This is evident in the oil pipeline case
study. We are currently busy on a new technique for the automatic derivation
of thresholds that we expect to report soon.
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