Skip to main content

Analysis and Design of Interconnected Systems: A Systems and Control Perspective

  • Chapter
  • First Online:
Book cover ModelEd, TestEd, TrustEd

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10500))

  • 642 Accesses

Abstract

Hybrid and cyber-physical systems are at the intersection of the theory of concurrent processes and of systems and control theory. This paper reviews some ideas from systems and control theory, which can be considered to be fruitful for the study of such systems. Particular emphasis is on the use of dissipative systems theory for the analysis of interconnected systems, and on the ‘control by interconnection’ problem using an extension of the notion of (bi-)simulation to the realm of continuous dynamics. Furthermore, the paper surveys a definition of hybrid systems, which treats the continuous and discrete dynamics on an equal footing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in the sequel we will also use the notations lxaw for time-functions, mapping for each time instant t to elements \(l(t) \in \mathcal {L}, x(t) \in \mathcal {X}, a(t) \in \mathcal {A}, w(t) \in \mathcal {W}\), respectively.

References

  1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991–1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6_30

    Chapter  Google Scholar 

  2. Bollobas, B.: Modern Graph Theory, Graduate Texts in Mathematics, vol. 184. Springer, Heidelberg (1998). doi:10.1007/978-1-4612-0619-4

    Google Scholar 

  3. Colgate, J.E., Hogan, N.: Robust control of dynamically interacting systems. Int. J. Control 48(1), 65–88 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dashkovskiy, S., Ito, H., Wirth, F.: On a small-gain theorem for ISS networks in dissipative Lyapunov form. Eur. J. Control 17(4), 357–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  6. Hatanaka, T., Chopra, N., Fujita, M., Spong, M.W.: Passivity-Based Control and Estimation in Networked Robotics. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  7. Khong, S.Z., van der Schaft, A.J.: Converse passivity theorems. In: Proceedings of the IFAC World Congress, pp. 9983–9986, Toulouse (2017)

    Google Scholar 

  8. Khong, S.Z., van der Schaft, A.J.: The converse of the passivity and small-gain theorem for nonlinear input-output maps. Submitted for publication (2017). arXiv:1707.00148

  9. Megawati, N.Y., van der Schaft, A.J.: Bisimulation equivalence of differential-algebraic systems. Int. J. Control (2016). doi:10.1080/00207179.2016.1266519

  10. Pappas, G.J.: Bisimilar linear systems. Automatica 39, 2035–2047 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pola, G., van der Schaft, A.J., Di Benedetto, M.D.: Equivalence of switching linear systems by bisimulation. Int. J. Control 79, 74–92 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. van der Schaft, A.: Bisimulation of dynamical systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 555–569. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2_37

    Chapter  Google Scholar 

  13. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE Trans. Autom. Control 49, 2160–2172 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. van der Schaft, A.J.: Achievable behavior of general systems. Syst. Control Lett. 49, 141–149 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. van der Schaft, A.J.: Equivalence of hybrid dynamical systems. In: Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2004), Leuven, Belgium, July 2004

    Google Scholar 

  16. van der Schaft, A.: \({L}_2\)-Gain and Passivity Techniques in Nonlinear Control. Springer, Cham (2017). doi:10.1007/978-3-319-49992-5. 3rd Revised and Enlarged edn. (1st edn. (1996), 2nd edn. (2000)), p. xviii + 321

    Book  MATH  Google Scholar 

  17. van der Schaft, A.J., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Found. Trends Syst. Control 1(2–3), 173–378 (2014). Now Publishers, Boston-Delft

    Article  Google Scholar 

  18. van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical Systems. LNCIS, vol. 251. Springer, London (2000). doi:10.1007/BFb0109998

    Book  MATH  Google Scholar 

  19. Stramigioli, S.: Energy-aware robotics. In: Camlibel, M.K., Julius, A.A., Pasumarthy, R., Scherpen, J.M.A. (eds.) Mathematical Control Theory I. LNCIS, vol. 461, pp. 37–50. Springer, Cham (2015). doi:10.1007/978-3-319-20988-3_3

    Chapter  Google Scholar 

  20. Vinjamoor, H., van der Schaft, A.J.: The achievable dynamics via control by interconnection. IEEE Trans. Autom. Control 56(5), 1110–1117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Willems, J.C.: Dissipative dynamical systems, part I: general theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  MATH  Google Scholar 

  22. Willems, J.C.: On interconnections, control, and feedback. IEEE Trans. Autom. Control 42, 326–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Willems, J.C., Trentelman, H.L.: Synthesis of dissipative systems using quadratic differential forms, part I. IEEE Trans. Autom. Control 47, 53–69 (2002)

    Article  MATH  Google Scholar 

  24. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

After my collaboration with Hans Schumacher at the CWI on the topic of hybrid systems, I was very fortunate to be close to the Formal Methods and Tools group at the Computer Science department of the University of Twente, headed by Ed Brinksma. I happily remember the enjoyable and very stimulating conversations with especially Ed Brinksma, Rom Langerak and Joost-Pieter Katoen, also involving Jan Willem Polderman from the mathematics side. Among others this led to the celebrated NWO-CASH project. I still regard this collaboration as an exemplary case of open and fruitful collaboration. It is a great pleasure to dedicate this paper, which is heavily inspired by this collaboration, to Ed at the occasion of his 60th birthday. Happy birthday Ed!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan van der Schaft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

van der Schaft, A. (2017). Analysis and Design of Interconnected Systems: A Systems and Control Perspective. In: Katoen, JP., Langerak, R., Rensink, A. (eds) ModelEd, TestEd, TrustEd. Lecture Notes in Computer Science(), vol 10500. Springer, Cham. https://doi.org/10.1007/978-3-319-68270-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68270-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68269-3

  • Online ISBN: 978-3-319-68270-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics