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Abstract. In modelling real-world knowledge, there often arises a need
to represent and reason with meta-knowledge. To equip description logics
(DLs) for dealing with such ontologies, we enrich DL concepts and roles
with finite sets of attribute–value pairs, called annotations, and allow
concept inclusions to express constraints on annotations. We show that
this may lead to increased complexity or even undecidability, and we
identify cases where this increased expressivity can be achieved without
incurring increased complexity of reasoning. In particular, we describe
a tractable fragment based on the lightweight description logic EL, and
we cover SROIQ, the DL underlying OWL 2 DL.

1 Introduction

Modern data management has re-discovered the power and flexibility of graph-
based representation formats, and so-called knowledge graphs are now used in
many practical applications, e.g., in companies such as Google or Facebook. The
shift towards graphs is motivated by the need for integrating knowledge from a
variety of heterogeneous sources into a common format.

Description logics (DLs) seem to be an excellent fit for this scenario, since
they can express complex schema information on graph-like models, while sup-
porting incomplete information via the open world assumption. Ontology-based
query answering has become an important research topic, with many recent
results and implementations, and the W3C OWL and SPARQL standards pro-
vide a basis for practical adoption. One would therefore expect to encounter DLs
in many applications of knowledge graphs.

However, this is not the case. While OWL is often used in RDF-based knowl-
edge graphs developed in academia, such as DBpedia [4] and Bio2RDF [3], it
has almost no impact on other applications of graph-structured data. This might
in part be due to a format mismatch. Like DLs, many knowledge graphs use
directed, labelled graph models, but unlike DLs they often add (sets of) anno-
tations to vertices and edges. For example, the fact that Liz Taylor married
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Richard Burton can be described by an assertion spouse(taylor, burton), but in
practice we may also wish to record that they married in 1964 in Montreal, and
that the marriage ended in 1974. We may write this as follows:

spouse(taylor, burton)@[start : 1964, location : Montreal, end : 1974] (1)

Such annotated graph edges today are widespread in practice. Prominent rep-
resentatives include Property Graph, the data model used in many graph data-
bases [19], and Wikidata, the knowledge graph used by Wikipedia [24]. Looking
at Wikidata as one of the few freely accessible graphs outside academia, we
obtain several requirements:

– No single purpose. Annotations are used for many modelling tasks. Expected
cases such as validity time and provenance are important, but are by far not
the only uses, as (1) (taken from Wikidata) illustrates. Besides start, end, and
location, over 150 other attributes are used at least 1000 times as annotations
on Wikidata.

– Multi-graphs. It can be necessary to include the same assertion multiple times
with different annotations. For example, Wikidata in addition to (1) also
includes the assertion spouse(taylor, burton)@[start : 1975, end : 1976]. Such
multi-graphs are also supported by Property Graph, but not by logics with
functional annotations, such as semi-ring approaches [9,22] and aRDF [23].

– Multi-attribute annotations. Wikidata (but not Property Graph) further sup-
ports annotations where the same attribute has more than one value. Among
others, Wikidata includes, e.g., the assertion castMember(Sesame Street,
Frank Oz)@[role : Bert, role : Cookie Monster, role : Grover].

One can encode annotated (multi-)graphs as directed graphs, e.g., using reifi-
cation [8], but DLs cannot express much over such a model. For example, one
cannot say that the spouse relation is symmetric, where annotations are the same
in both directions [16]. Other traditional KR formalisms are similarly challenged
in this situation.

In a recent work, we have therefore proposed to develop logics that sup-
port sets of attribute–value annotations natively [16]. The according gener-
alisation of first-order logic, called multi-attribute predicate logic (MAPL), is
expressive enough to capture weak second-order logic, making reasoning non-
semi-decidable. For that reason, we have developed the Datalog-like MAPL rule
language (MARPL) as a decidable fragment.

In this paper, we explore the use of description logics as a basis for decidable,
and even tractable, fragments of MAPL. The resulting family of attributed DLs
allows statements such as spouse@X � spouse−@X to say that spouse is sym-
metric. We introduce set variables (X in the example) to refer to annotations.
We refer to variables to express constraints over annotations and to compare
attribute values between them. A challenge is to add functionality of this type
without giving up the nature of a DL.
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Another challenge is that these extensions may greatly increase the complex-
ity of DLs. We show that reasoning becomes 2ExpTime-complete for attributed
ALCH, a prototypical DL; ExpTime-complete for attributed EL, a DL close to
OWL 2 EL; and N2ExpTime-complete for attributed SROIQ, the DL under-
lying OWL 2 DL. Slight extensions of our DLs even lead to undecidability. We
develop syntactic constraints to recover lower complexities, including PTime-
completeness for attributed EL.

For readability, some proofs are only sketched out in this paper or have been
omitted entirely. Full versions can be found in the technical report [14].

2 Attributed Description Logics

We introduce attributed description logics by defining the syntax and semantics
of attributed ALCH, denoted ALCH@+. This allows us to illustrate the cen-
tral ideas without having to deal with the full generality of SROIQ, which we
introduce in Sect. 6. We note that fact entailment can be polynomially reduced
in the DLs we study.

2.1 Syntax and Intuition

We first give the syntax and intuitive semantics of ALCH@+; the semantics will
be formalised thereafter.

Example 1. We start with a guiding example, which will be formally
explained when we define ALCH@+. Wikidata contains assertions of the form
educatedAt(a person, a university)@[start : 2005, end : 2009, degree : master]. This
motivates the following ALCH@+ axiom:

X : �degree : master� (∃educatedAt@X.University � MSc@[start : X.end]
)

(2)

The underlying DL axiom is ∃educatedAt.University � MSc, stating that anybody
educated at some university holds an M.Sc. Axiom (2) restricts this to educatedAt
assertions whose annotations X specify the degree to be a master, where X may
contain further attribute–value pairs. Indeed, if X specifies an end date for the
education, then this is used as a start for the entailed MSc assertion. Similarly,
we may express that a person that was educatedAt some institution (where the
degree attribute has some value) obtained a degree from this institution:

educatedAt@�degree : +� � obtainedDegreeFrom (3)

Attributed DLs are defined over the usual DL signature with sets of concept
names NC, role names NR, and individual names NI. In OWL terminology, con-
cepts correspond to classes, roles correspond to properties, and individual names
correspond to individuals. We consider an additional setNV of (set) variables. Fol-
lowing the definition of multi-attributed predicate logic (MAPL, [16]), we define
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annotation sets as finite binary relations, understood as sets of attribute–value
pairs. In particular, attributes refer to domain elements and are syntactically
denoted by individual names. To describe annotation sets, we introduce specifiers.
The set S of specifiers contains the following expressions:

– set variables X ∈ NV;
– closed specifiers [a1 : v1, . . . , an : vn]; and
– open specifiers �a1 : v1, . . . , an : vn�,
where ai ∈ NI and vi is either +, an individual name in NI, or an expression of the
form X.c, with X a set variable in NV and c an individual name in NI. Intuitively,
closed specifiers define specific annotation sets whereas open specifiers merely pro-
vide lower bounds.Weuse+ for “one ormore” values,whileX.c refers to the (finite,
possibly empty) set of all values of attribute c in an annotation set X. A ground
specifier is a specifier that does not contain expressions of the form X.c.

Example 2. The open specifier �degree : master� in Example 1 describes all
annotation sets with at least the given attribute–value pair. The closed spec-
ifier [start : X.end] denotes the (unique) annotation set with start as the only
attribute, having exactly the values given for attribute end in X.

The set R of ALCH@+ role expressions contains all expressions r@S with r ∈ NR

and S ∈ S. The set C of ALCH@+ concept expressions is defined as follows

C ::= � | ⊥ |NC@S | ¬C |C 	 C |C 
 C | ∃R.C | ∀R.C (4)

An ALCH@+ concept (or role) assertion is an expression A(a)@S (or
r(a, b)@S), with A ∈ NC (or r ∈ NR), a, b ∈ NI, and S ∈ S a specifier that
is not a set variable. An ALCH@+ concept inclusion is an expression of the
form

X1 :S1, . . . , Xn :Sn (C � D), (5)

where C,D ∈ C are ALCH@+ concept expressions, S1, . . . , Sn ∈ S are speci-
fiers, and X1, . . . , Xn ∈ NV are set variables occurring in C,D or in S1, . . . , Sn.
ALCH@+ role inclusions are defined analogously, but with role expressions
instead of the concept expressions. An ALCH@+ ontology is a set of ALCH@+
assertions, and role and concept inclusions.

To simplify notation, we omit the specifier �� (meaning “any annotation set”)
in role or concept expressions, as done for University in Example 1. In this sense,
any ALCH axiom is also an ALCH@+ axiom. Moreover, we omit prefixes of the
form X :��, which merely state that X might be any annotation set.

We follow the usual DL notation for referring to other attributed DLs, where
we add symbols to the DL name to indicate additional features, and remove
symbols to indicate restrictions. Thus, ALC@+ denotes ALCH@+ without role
hierarchies, and ALCH@ corresponds to the fragment of ALCH@+ that disallows
+ in specifiers.
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2.2 Formal Semantics

As usual in DLs, an interpretation I = 〈ΔI , ·I〉 consists of a domain ΔI and an
interpretation function ·I . Individual names c ∈ NI are interpreted as elements
cI ∈ ΔI . Concepts and roles are interpreted as relations that here include anno-
tation sets:

– AI ⊆ ΔI × Pfin

(
ΔI × ΔI)

for a concept A ∈ NC, and
– rI ⊆ (ΔI × ΔI) × Pfin

(
ΔI × ΔI)

for a role r ∈ NR,

where Pfin

(
ΔI × ΔI)

denotes the set of all finite binary relations over ΔI .
Expressions with free set variables are interpreted using variable assignments
Z : NV → Pfin

(
ΔI × ΔI)

. For an interpretation I and a variable assignment Z,
we define the semantics of specifiers as follows:

XI,Z :={Z(X)},

[a : b]I,Z :={{〈aI , bI〉}},

[a : X.b]I,Z :={{〈aI , δ〉 | there is δ ∈ ΔI such that 〈bI , δ〉 ∈ Z(X)}},

[a : +]I,Z :={{〈aI , δ1〉, . . . , 〈aI , δ�〉} | � ≥ 1 and δi ∈ ΔI},

[a1 : v1, . . . , an : vn]I,Z :=
{⋃n

i=1 Ψi

∣∣Ψi ∈ [ai : vi]
I,Z
}

,

�a1 : v1, . . . , an : vn�I,Z :=
{
Ψ ∈ Pfin

(
ΔI × ΔI

) ∣∣Ψ ⊇ Φ

for some Φ ∈ [a1 : v1, . . . , an : vn]I,Z},

where X ∈ NV, a, ai, b ∈ NI, and vi is +, an element of NI, or of the form X.a.
We can now define the semantics of concept and role expressions:

A@SI,Z := {δ ∈ ΔI | 〈δ,Ψ〉 ∈ AI for some Ψ ∈ SI,Z} (6)

r@SI,Z := {〈δ1, δ2〉 ∈ ΔI × ΔI | 〈δ1, δ2,Ψ〉 ∈ rI for some Ψ ∈ SI,Z} (7)

Observe that we quantify existentially over admissible annotations here (“some
Ψ ∈ SI,Z”). However, variables and closed specifiers without + are interpreted
as singleton sets, so true existential quantification only occurs if S is an open
specifier or if it contains +. All other DL constructs can now be defined as usual,
e.g., (C 	 D)I,Z = CI,Z ∩ DI,Z , (∃r.C)I,Z = {δ | there is 〈δ, ε〉 ∈ rI,Z with ε ∈
CI,Z}, and (¬C)I,Z = ΔI \ CI,Z . Note that we do not include annotations on
�, i.e. �I,Z = ΔI , and similarly for ⊥I,Z = ∅.

Now I satisfies an ALCH@+ concept inclusion α of the form (5), written I |=
α, if for all variable assignments Z such that Z(Xi) ∈ SI,Z

i for all i ∈ {1, . . . , n},
we have CI,Z ⊆ DI,Z . Satisfaction of role inclusions is defined analogously.
Moreover, I satisfies an ALCH@+ concept assertion A(a)@S if 〈aI ,Ψ〉 ∈ AI for
some Ψ ∈ SI (the latter is well-defined since S contains no variables). I satisfies
an ontology if it satisfies all of its axioms. Based on this model theory, logical
entailment is defined as usual.
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Example 3. Consider the concept inclusion α of Example 1 and the interpreta-
tion I over domain ΔI = {Mary, John,TUD, start, end, 2017, 2018,master, degree},
given by

MScI = {〈Mary, {〈start, 2016〉}〉, 〈John, {〈start, 2017〉}〉},

educatedAtI = {〈Mary,TUD, {〈degree,master〉, 〈end, 2016〉}〉,
〈John,TUD, {〈degree,master〉, 〈end, 2017〉}〉}, and

UniversityI = {〈TUD, {}〉}.

Then I |= α, i.e., I satisfies α.

3 Expressivity of Attributed Description Logics

In this section, we clarify some basic semantic properties of attributed DLs and
the general relation of attributed DLs to other logical formalisms. As a first
observation, we note that already ALC@+ is too expressive to be decidable:

Theorem 1. Satisfiability of attributed DLs with + is undecidable, even if the
DL only supports 	, and supports either only open specifiers or only closed spec-
ifiers.

Proof. We reduce from the query answering problem for existential rules, i.e.,
first-order formulae of the form

∀x.p1(x1
1, . . . , x

1
ar(p1)

) ∧ . . . ∧ pn(xn
1 , . . . , xn

ar(pn)
) → ∃y.p(z1, . . . , zar(q)), (8)

where the variables xi
j occur among the universally quantified variables, i.e.,

xi
j ∈ x, and variables zi might be universally or existentially quantified, i.e.,

zi ∈ x ∪ y. We require that each universally quantified variable occurs in some
atom in the premise of the rule (safety), and that each existentially quantified
variable occurs only once per rule. The latter is without loss of generality since
rules that violate this restriction can be split into two rules using an auxiliary
predicate. A fact is a formula of the form q(c1, . . . , car(q)) with constants ci.
Entailment of facts from given sets of facts and existential rules is known to be
undecidable [2,7].

To translate an existential rule of the form (8), we consider DL concept names
P(i) for each predicate symbol p(i), and individual names a1, . . . , a�, where � is
the maximal arity of any such predicate. For each universally quantified variable
x, let πx = 〈pi, k〉 be an (arbitrary but fixed) position at which x occurs, i.e., for
which x = xi

k. The rule can now be rewritten to the attributed DL axiom

X1 :S1, . . . , Xn :Sn (P1@X1 	 . . . 	 Pn@Xn � P@T ) ,

where the specifiers are defined as Si = [aj : Xm.ak | 1 ≤ j ≤ ar(pi) and πxi
j

=
〈pm, k〉] and T = [aj : + | zj ∈ y] ∪ [aj : Xm.ak | zj ∈ x and πzj

= 〈pm, k〉]
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(note that we slightly abuse | and ∪ here for a simpler presentation). For exam-
ple, the rule ∀xy.p1(x, y) ∧ p2(y, x) → ∃z.p(x, z) is translated into the concept
inclusion X1 : S1,X2 : S2 (P1@X1 	 P2@X2 � P@[a1 : X1.a1, a2 : +]) , where
S1 = [a1 : X1.a1, a2 : X2.a1] and S2 = [a1 : X2.a1, a2 : X1.a1]. Observe that the
specifier Si for Xi may contain assignments of the form aj : Xi.aj : by our seman-
tics, this merely states that aj may have zero or more values. Facts of the form
q(c1, . . . , cm) can be translated into assertions Q(b)@[a1 : c1, . . . , am : cm] for an
individual name b that is used in all such assertions.

Entailment of facts is preserved in this translation. Correctness is retained
if we replace all closed by open specifiers, since the translated ontology admits
a least model where all annotation sets are interpreted as the smallest possible
sets. 	


In Sects. 4 and 5, we present two approaches for overcoming the undecidabil-
ity of Theorem 1, namely to exclude + from attributed DLs, and to restrict the
use of expressions of the form X.a.

Example 4. It follows from Theorem 1 that ALC@+ ontologies may require mod-
els with annotation sets of unbounded size. To see this, consider the following
ontology:

A(b)@�c : c� (9)
A@X � ∃r.A@�c : +, p : X.c, p : X.p� (10)

A@X 	 A@�p : X.c� � ⊥ (11)

Axiom (9) defines an initial A member. Axiom (10) states that all A members
have an r successor that is in A, annotated with some value for c (“current”),
and values for p (“previous”) that include all of its predecessor’s c and p values.
Axiom (11) requires that no individual in A may have a set of p values that
include all of its c values. It is not hard to see that all models of this ontology
include an infinite r-chain with arbitrarily large (but finite) A-related annota-
tions sets.

It is interesting to discuss Theorem 1 in the context of our previous
work on multi-attributed predicate logic (MAPL), which generalises first-order
logic with annotation sets for arbitrary predicates. Indeed, our interpretations
for attributed DLs are a special case of multi-attributed relational structures
(MARS), though we do not make the unique name assumption here, since it is
not common for the DLs we consider. Otherwise, attributed DLs are fragments
of MAPL. Our notation X.a is new, but it can be simulated in MAPL, e.g., by
using function definitions [16].

MAPL is not semi-decidable, and we have proposed MAPL rules (MARPL)
as a decidable fragment. MARPL supports + without restrictions, and it includes
arbitrary predicate arities and more expressive specifiers (with some form of
negation). In contrast, attributed DLs add the ability to quantify existentially
over annotations, and therefore to derive partially specified annotation sets,
which is the main reason for Theorem 1. In general, attributed DLs are based on
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the open world assumption, whereas MARPL could equivalently be interpreted
under a closed world, least model semantics. Nevertheless, even without + the
translation from the proof of Theorem 1 allows attributed DLs to capture rule
languages, as the following result shows. Here, by Datalog we mean first-order
Horn logic without existential quantifiers.

Theorem 2. Attributed DLs can capture Datalog in the sense that every set P
of Datalog rules and fact q(c1, . . . , cm) can be translated in linear time into an
attributed DL ontology KBP and assertion Q(b)@S, such that P |= q(c1, . . . , cm)
iff KBP |= Q(b)@S. This translation requires just 	, no +, and either only open
or only closed specifiers.

The ability to capture Datalog reminds us of nominal schemas, the exten-
sion of DLs with “variable nominals” [13,15]. Indeed, this extension can also be
captured in attributed DLs (we omit the details here). The converse is not true,
e.g., since nominal schemas cannot encode annotation sets on role assertions.
Role inclusion axioms such as spouse@X � spouse−@X are therefore impossi-
ble. Another related formalism is DL-LiteA, which supports (data) annotations
on domain elements and pairs of domain elements [5]. This extension of DLs
supports some forms of ternary relations. Nevertheless, the use case and com-
plexity properties of DL-LiteA are different from the logics we study here, and
it remains for future work to further explore attributed DL-Lite in more detail.

4 Reasoning in ALCH@

We first focus on ALCH@, for which we show reasoning to be decidable, albeit
at a higher complexity. For a first positive result, we consider ground ALCH@,
where ontologies do not contain any set variables. We show that we can translate
any ground ALCH@ ontology into an equisatisfiable ALCH ontology by intro-
ducing fresh names for annotated concept and role names. This renaming is one
of the key ingredients in obtaining decision procedures for attributed DLs.

Theorem 3. Satisfiability of ground ALCH@ ontologies is ExpTime-complete.

Proof. Hardness is immediate since ALCH@ generalises ALCH. For member-
ship, we reduce ALCH@ satisfiability to ALCH satisfiability. Given an ALCH@

ontology KB, let KB† denote the ALCH ontology that is obtained by replac-
ing each annotated concept name A@S with a fresh concept name AS , and
each annotated role name r@S with a fresh role name rS , respectively. We then
extend KB† by all axioms

AS � AT , where AS and AT occur in translated axioms of KB†, and (12)

rS � rT , where rS and rT occur in translated axioms of KB† (13)

such that T is an open specifier, and the set of attribute–value pairs a : b in
S is a superset of the set of attribute–value pairs in T . We show that KB is
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satisfiable iff KB† is satisfiable. The claim then follows from the well-known
ExpTime-completeness of satisfiability checking in ALCH. Given an ALCH@

model I of KB, we directly obtain an ALCH interpretation J over ΔI by
undoing the renaming and applying I, i.e., by mapping AS ∈ NC to A@SI ,
rS ∈ NR to r@SI , and a ∈ NI to aI . Clearly, J |= KB†. Conversely, given an
ALCH model J of KB†, we construct an ALCH@-interpretation I over domain
ΔI = ΔJ ∪ {�}, where � is a fresh individual name, and define aI := aJ for all
a ∈ NI. For a ground closed specifier S = [a1 : b1, . . . , an : bn], we set ΨS := SI .
Similarly, for a ground open specifier S = �a1 : b1, . . . , an : bn�, we define ΨS :=
SI ∪ {〈�, �〉}. Furthermore, let AI := {〈a,ΨS〉 | a ∈ AJ

S for some specifier S}
and rI := {〈a, b,ΨS〉 | 〈a, b〉 ∈ rJ

S for some specifier S}. Then I |= KB,
where � ensures that axioms such as � � A@�a : b� 	 ¬A@[a : b] remain
satisfiable. 	

The other important technique for dealing with attributed DLs is grounding,
where we eliminate set variables from an ontology, thus transforming it into a
ground ontology. As illustrated by the next result, this grounding may lead to
an ontology of exponentially larger size, resulting in an increased complexity of
reasoning.

Theorem 4. Satisfiability of ALCH@ ontologies is in 2ExpTime.

Proof. Let KB be an ALCH@ ontology, and let NKB
I the set of individual names

occurring in KB, extended by one fresh individual name x. The grounding
ground(KB) of KB consists of all assertions in KB, together with grounded ver-
sions of inclusion axioms. Let I be an interpretation over domain ΔI = NKB

I

satisfying aI = a for all a ∈ NKB
I , and Z : NV → Pfin

(
ΔI × ΔI)

be a variable
assignment. Consider a concept inclusion α of the form X1 :S1, . . . , Xn :Sn (C �
D). We say that Z is compatible with α if Z(Xi) ∈ SI,Z

i for all 1 ≤ i ≤ n. In
this case, the Z-instance αZ of α is the concept inclusion C ′ � D′ obtained by

– replacing each variable Xi with [a : b | 〈a, b〉 ∈ Z(Xi)], and
– replacing every assignment a : Xi.b occurring in some specifier by all assign-

ments a : c such that 〈b, c〉 ∈ Z(Xi).

Then ground(KB) contains all Z-instances αZ for all concept inclusions α in KB
and all compatible variable assignments Z; and analogous axioms for role inclu-
sions. In general, there may be exponentially many different instances for each
terminological axiom in KB, thus ground(KB) is of exponential size. We conclude
the proof by showing that KB is satisfiable iff ground(KB) is satisfiable, the result
then follows from Theorem 3. By construction, we have KB |= ground(KB), i.e.,
any model of KB is also a model of ground(KB). Conversely, let I be a model of
ground(KB). Without loss of generality, assume that xI �= aI for all a ∈ NKB

I \{x}
(it suffices to add a fresh individual since x does not occur in KB). For an anno-
tation set Ψ ∈ Pfin

(
ΔI × ΔI)

, we define repx(Ψ) to be the annotation obtained
from Ψ by replacing any individual δ �∈ I(NKB

I ) in Ψ by xI . We let ∼ be the
equivalence relation induced by repx(Ψ) = repx(Φ) and define an interpretation
J over domain ΔJ := ΔI , where AJ := {〈δ,Φ〉 | 〈δ,Ψ〉 ∈ AI and Ψ ∼ Φ} for
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A ∈ NC, rJ := {〈δ, ε,Φ〉 | 〈δ, ε,Ψ〉 ∈ rI and Ψ ∼ Φ} for r ∈ NR, and aJ := aI

for all individual names a ∈ NI. It remains to show that J is indeed a model
of KB. Suppose for a contradiction that there is a concept inclusion α that is
not satisfied by J (the case for role inclusions is analogous). Then we have some
compatible variable assignment Z that leaves α unsatisfied. Let Zx be the vari-
able assignment X �→ repx(Z(X)) for all X ∈ NV. Clearly, Zx is also compatible
with α. But now we have CJ ,Z = CI,Zx for all ALCH@ concepts C, yielding
the contradiction I �|= αZx

. 	

We regain decidability for ALC@+ by disallowing expressions of the form X.a.

Theorem 5. Satisfiability of ALCH@+ ontologies without expressions of the
form X.a is in 2ExpTime.

Proof. We reduce satisfiability in ALCH@+ (without expressions of the form
X.a) to satisfiability in ALCH, similar to the proof of Theorem4. Consider an
ALCH@+ ontology KB that contains the individual names NKB

I , along with two
fresh individual names x and x+. The grounding proceeds as in the proof of
Theorem 4, except that for Z-instances αZ of concept inclusions α, we addition-
ally replace each assignment a : + occurring in some specifier by the assign-
ment a : x+. The exponentially large grounding again yields containment in
2ExpTime. From a model J of KB, we obtain a model I of ground(KB) by set-
ting ΔI := NKB

I , aI := aJ for a ∈ NI \ {x, x+}, xI := x, xI
+ := x+,

AI := {〈δ,Ψ ∪ Φ〉 | 〈δ,Ψ〉 ∈ AJ ,Φ ∈ P ({〈a, x+〉 | 〈a, b〉 ∈ Ψ})} for A ∈ NC, and
rI := {〈δ, ε,Ψ ∪ Φ〉 | 〈δ, ε,Ψ〉 ∈ AJ ,Φ ∈ P ({〈a, x+〉 | 〈a, b〉 ∈ Ψ})} for r ∈ NR.
Clearly, if J satisfies a concept inclusion in KB, then I satisfies a corresponding
concept inclusion in ground(KB). Similarly, any concept inclusion satisfied by I
must correspond to a concept inclusion satisfied by J since x+ does not occur in
KB. The converse direction follows immediately from the proof of Theorem4. 	


Both of these upper bounds are tight, as the next theorem shows:

Theorem 6. Checking satisfiability of ALC@ ontologies without expressions of
the form X.a is 2ExpTime-hard.

Proof (sketch). We reduce the word problem for exponentially space-bounded
alternating Turing machines (ATMs) [6] to the entailment problem for ALC@

ontologies. We construct the tree of all configurations reachable from the initial
configuration, encoding the transitions in the edges of the tree, i.e., each configu-
ration is represented by an individual. The tape cells are represented as concepts
carrying an annotation encoding the cell content and position (as a binary num-
ber). We mark the current head position with an additional concept, allowing
us to copy each non-head position of the tape to successors in the configura-
tion tree, while changing the tape cell at the head position and moving the head
depending on the transition from the preceding configuration. As acceptance of a
given configuration depends solely on the state and the successor configurations,
we can propagate acceptance backwards from the leaves of the configuration tree
to the initial configuration. 	
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5 Tractable Reasoning in Attributed EL
In this section, we investigate ALC@ fragments based on the EL family of descrip-
tion logics. This family includes EL++, which forms the logical foundation of
the OWL 2 EL profile and is widely used in applications such as in SNOMED
CT [21], a clinical terminology with global scope. SNOMED CT also features
a compositional syntax [20], which has recently been augmented with attribute
sets allowing arbitrary concrete values. While concept expressions in either of
the syntaxes can be translated into the other, EL++ provides no such attributes
(i.e., concepts with attribute sets have to be represented by introducing new
concept names). We can not only capture these attributes using our attribute–
value sets, but also include them into the reasoning process. As a (simplified)
example, the concept of a 500 mg Paracetamol tablet could be annotated with

�strengthMagnitude : 500, tradeName : PANADOL�.

The basic logic is EL@, the fragment of ALC@ which uses only ∃, 	, �
and ⊥ in concept expressions. Unfortunately, Theorem 2 shows that EL@ is
ExpTime-complete, even with severe syntactic restrictions. To overcome this
source of complexity, we impose a bound on the number of set variables per
concept inclusion and exclude X.a:

Theorem 7. Let � ∈ N. Checking satisfiability of EL@ ontologies with at most �
variables per axiom, and without expressions of the form X.a is PTime-complete.

Proof. Hardness follows from the PTime-hardness of EL [1]. For membership, we
polynomially reduce EL@ satisfiability to ELH satisfiability. Indeed, the ground-
ing used in Theorem 4 can be restricted to annotation sets that are described
in (ground) specifiers that are found in the ontology, since no new sets can be
derived without X.a. The bounded number of variables then ensures that the
grounding remains polynomial. Since neither grounding nor renaming introduce
negation, the resulting ontology belongs to the ELH fragment of ALCH. 	

Observe that we can allow some uses of X.a, given that we obey certain restric-
tions:

Theorem 8. Let �, k ∈ N. Checking satisfiability of EL@ ontologies is PTime-
complete if all of the following conditions are satisfied:

(A) axioms contain at most � variables,
(B) any closed or open specifier contains at most k expressions of the form X.a,

and,
(C) if any specifier contains an assignment a : X.b, then it does not contain any

other assignment for attribute a.

Proof. As in the proof of Theorem 7, we can obtain a polynomial grounding,
but we may need to consider annotation sets that are not explicitly specified
in the original ontology. But, due to condition (C), as the set of values for
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any attribute we only need to consider one of the polynomially many sets of
values given explicitly through ground assignments in specifiers. Considering
any combination of these value sets for any of the at most k attributes that use
X.a in assignments results in polynomially many annotation sets. 	

We now show that violating any of these conditions makes satisfiability
intractable.

Theorem 9. Let KB be an EL@ ontology and consider conditions (A)–(C) of
Theorem 8 with � = 1 and k = 2. Then deciding satisfiability of KB is

(1) ExpTime-hard if KB satisfies only conditions (B) and (C),
(2) ExpTime-hard if KB satisfies only conditions (A) and (C), and
(3) PSpace-hard if KB satisfies only conditions (A) and (B).

It is an open question whether the PSpace bound in the third case is tight.
Nevertheless, it implies intractability for this case. Finally, we show that also
EL@+ (without X.a) is intractable (recall that EL@+ with X.a is already unde-
cidable by Theorem 1).

Theorem 10. Checking satisfiability of EL@+ ontologies without expressions of
the form X.a is ExpTime-complete.

Proof. ExpTime-hardness follows from Theorem 9. From the proof of Theorem 5,
we obtain an exponentially large grounding, which, together with thePTime com-
plexity of ELH, yields the ExpTime upper bound. 	


6 Attributed OWL

In this section, we consider attributed DLs with further expressive features, so
that in particular we can cover all of the expressivity of the OWL 2 DL ontology
language [17]. The underlying DL is SROIQ@, which we introduce next by
slightly extending our earlier definition of ALCH@. The set R of SROIQ@ role
expressions contains all expressions r@S and r−@S with r ∈ NR and S ∈ S.
The set C of SROIQ@ concept expressions is defined as follows

C ::= � | ⊥ |NC@S | {NI} | ¬C |C 	 C |C 
 C | ∃R.C | ∀R.C | �nR.C | �nR.C
(14)

The new features are nominals {c}, which denote concepts containing one indi-
vidual, and number restrictions �nR.C and �nR.C, which express concepts of
elements with at most/at least n ≥ 0 R-successors in C. Note that we do not
include annotations on nominals. This is no real restriction, since one can use
axioms such as {c} ≡ Ac@�� to introduce a concept name Ac that may hold
such annotations. This allows us to use the same notion of interpretation as for
ALCH@. Assertions, concept and role inclusions are defined as before, based on
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these extended sets of expressions. In addition, SROIQ@ supports complex role
inclusion axioms of the form

X1 :S1, . . . , Xn :Sn (R1 ◦ . . . ◦ R� � T ), (15)

where Ri, T ∈ R are SROIQ@ role expressions, S1, . . . , Sn ∈ S are specifiers,
and X1, . . . , Xn ∈ NV are set variables occurring among Ri, T, S1, . . . , Sn. A
SROIQ@ ontology is a set of SROIQ@ assertions, and role and concept inclu-
sions.

The semantics of these constructs and axioms is defined as usual [10], where
the interpretation of roles and concepts takes annotations into account as in
Sect. 2. For instance, we may express that any drug, such as a Paracetamol
tablet, that contains at most one active ingredient and a certain amount of some
such ingredient, such as 500 mg of Acetaminophen, has the same dose:

X :�� Drug 	 �1 hasActiveIngredient.� 	 ∃hasActiveIngredient@X.� �
Drug@�strengthMagnitude : X.strengthMagnitude�

To ensure decidability of reasoning, SROIQ imposes two additional restric-
tions on ontologies: simplicity and regularity [10]. We adopt them to SROIQ@

as follows.
Simplicity is defined as in SROIQ, ignoring the annotations. The set of non-

simple roles Nn
R ⊆ NR w.r.t. a SROIQ@ ontology is defined recursively: t ∈ Nn

R

if t occurs on the right of an axiom of form (15) and either (1) � > 1 or (2) some
non-simple role s ∈ Nn

R occurs on the left of the axiom. All other role names are
simple. We now require that only simple roles occur in R in number restrictions
�nR.C and �nR.C.

A SROIQ@ ontology is regular if there is a strict partial order ≺ on the set
N±

R = NR ∪ {r− | r ∈ NR}, such that

(1) for all R ∈ N±
R and s ∈ NR, we have s ≺ R iff s− ≺ R, and

(2) for all role inclusion axioms of form (15), the inclusion R1 ◦ . . . ◦ R� � T has
one of the following forms:

T@S ◦ T@S � T@S R1 ◦ . . . ◦ R�−1 ◦ T@S � T@S r−@S � r@S

R1 ◦ . . . ◦ R� � T@S T@S ◦ R2 ◦ . . . ◦ R� � T@S

where S ∈ S, T ∈ N±
R , r ∈ NR, and R1, . . . , R� ∈ R are of form

R1@S1, . . . , R�@S� such that Ri ≺ T for all i ∈ {1, . . . , �}.

Note that we adopt the usual conditions from SROIQ for (inverted) role names,
and further require that cases with the same role T on both sides use the same
specifier S. As for SROIQ, this condition can be verified in polynomial time by
computing a minimal relation ≺ that satisfies the conditions and checking if it
is a strict partial order.

For reasoning, the step from ALCH@ to SROIQ@ leads to several dif-
ficulties. First, nominals and cardinality restrictions may lead to the entail-
ment of equalities a ≈ b, which has consequences on annotation sets (e.g.,
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A@�c : a� ≡ A@�c : b� in this case). For obtaining complexity upper bounds by
transformation to standard DLs as in Sect. 4, we need to axiomatise such rela-
tionships. Second, nominals may be used to restrict the overall size of the domain,
e.g., when stating � � {a}. Besides the entailment of further equalities, this also
changes the semantics of open specifiers (e.g., we obtain A@�a : a� � A@[a : a]
in this case). As before, this requires suitable axiomatisation in SROIQ. Either
of these two effects may require exponentially many auxiliary axioms, leading
to an N3ExpTime upper bound even for ground SROIQ@. However, we will
show an N2ExpTime upper bound as for SROIQ, which is tight.

Theorem 11. Satisfiability of ground SROIQ@ ontologies is in N2ExpTime.

To prove this theorem, we first translate ground SROIQ@ into an auxiliary
DL, called SROIQ≈, and then show how to reason in this DL by an exponential
reduction to C2, the two-variable fragment with counting [18], which yields the
desired N2ExpTime upper bound. The second part of the proof is split over
several lemmas.

SROIQ≈, in addition to the usual SROIQ axioms, supports concept
inclusions of the form a ≈ b ⇒ C � D and role inclusions of the form
a ≈ b ⇒ R1 ◦ . . . ◦ R� � T . An axiom a ≈ b ⇒ α is satisfied by interpreta-
tion I if either aI �= bI or I |= α.

The translation from a ground SROIQ@ ontology KB to a SROIQ≈ ontol-
ogy KB‡ now proceeds as for ground ALCH@, by replacing annotated concept
names A@S by new names AS , and likewise for roles. However, we now introduce
names AS ∈ NC and rS ∈ NR for all possible open and closed ground specifiers
over the set of individual names in KB, as opposed to only those occurring in
KB. We then add two families of axioms for capturing the aforementioned effects.
First, to handle individual equality, for each A ∈ NC and r ∈ NR, we add axioms
a ≈ b ⇒ AS � AT and a ≈ b ⇒ rS � rT for every pair S, T of ground specifiers
that are either both open or both closed, and where the sets of pairs in S and
T are the same when replacing each occurrence of a by b. Second, to handle
bounded domain size, we consider an individual name z not occurring in KB.
Entailments of the form z ≈ a will be used to detect the bounded domain case.
We can formalise this effect by axioms z ≈ a ⇒ � � ⊔

c∈NKB
I

{c}, where NKB
I is

the set of individual names occurring in KB for all a ∈ NKB
I . To handle specifiers

in this situation, we add axioms of the form

z ≈ a ⇒ AS �
⊔

T⊇cS

AT for all A ∈ NC in KB and a ∈ NKB
I (16)

where S is a ground open specifier and T ⊇c S holds whenever T is a ground
closed specifier that contains all attribute–value pairs in S. We would need a
similar axiom as (16) for roles, but this would require disjunctions of arbitrary
roles, which is not supported in SROIQ. However, since these axioms only are
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necessary when all elements in the domain of interpretation are the interpretation
of some individual name in NKB

I , we can instead use concept inclusions as follows:

z ≈ a ⇒ {b} 	 ∃rS .{c} �
⊔

T⊇cS

∃rT .{c} for all r ∈ NR in KB and a, b, c ∈ NKB
I

(17)

where S and T are as above. Intuitively, this axiom states that any fact rS(b, c)
entails some fact of the form rT (b, c). Finally, as previously for ALCH@, we also
add all axioms of the form (12) and (13). This finishes our construction of KB‡.

Lemma 1. For any ground SROIQ@ ontology KB, the SROIQ≈ ontology
KB‡ is equisatisfiable and can be constructed in exponential time.

The proof is analogous to the proof of Theorem 3 with one exception: when
constructing models we do not introduce a fresh, unnamed domain element �,
but rather use zJ instead (which may or may not be named).

To complete the proof of Theorem 11, it remains to show that satisfiability
checking for the exponentially larger KB‡ can still be done in nondeterministic
double exponential time w.r.t. the size of KB. To this end, we can define sim-
plicity and regularity for SROIQ≈ as for SROIQ@, by ignoring the additional
≈-prefixes and disregarding any condition related to annotations. In particu-
lar, we obtain a strict partial order ≺, as before, and, since KB‡ only con-
tains role inclusions translated directly from those in KB, it also satisfies the
regularity restrictions. We define the ◦-depth of a regular SROIQ≈ ontology
KB≈ to be the maximal number k for which there is a chain of (inverted) roles
R1 ≺ R′

1 ≺ . . . ≺ Rk ≺ R′
k, such that KB≈ contains complex role inclusions with

Ri occurring as one of several roles on the left and R′
i on the right. Intuitively

speaking, the ◦-depth bounds the number of axioms with ◦ along paths of ≺.
Clearly, the ◦-depth of KB‡ is the same as for KB, in spite of the exponential
increase in the number of axioms.

Lemma 2. Checking satisfiability of a SROIQ≈ ontology KB≈ of size s and ◦-
depth d is possible in NTIME (2p(s·2q(d))), where p, q are some fixed polynomial
functions.

In particular, if an ontology is of size O(2n) but retains a ◦-depth in O(n),
then reasoning is still in N2ExpTime. To show this, we adapt the translation
from SROIQ to SHOIQ as given by Kazakov [12], which is based on repre-
senting the effects of complex role inclusion axioms using concept inclusions. As
a first step, one constructs, for any non-simple role expression R, a nondetermin-
istic finite automaton BR that describes the regular language of all sequences
of roles that entail R [10]. We modify the known construction for SROIQ≈ by
allowing transitions in this automaton to be labelled not just by role expressions
S, but also by conditional expressions a ≈ b ⇒ S. The idea is that these tran-
sitions are only available if the precondition holds. By a slight adaptation of a
similar observation of Horrocks and Sattler [11, Lemma 11], we obtain:
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Lemma 3. For a SROIQ≈ ontology KB≈ and a role expression R, the size of
BR is bounded exponentially in the ◦-depth of KB≈.

Kazakov considers a normal form of axioms, which we can construct analo-
gously for SROIQ≈ [12, Table 1]. We can ensure that conditions a ≈ b occur in
concept inclusions only if they have the form a ≈ b ⇒ A � B with A,B ∈ NC.
The automaton B(R) is then used to replace every axiom of the form A � ∀R.B
(which never has ≈-conditions) by the following axioms:

A � AR
q q starting state of B(R) (18)

a ≈ b ⇒ AR
q1 � ∀S.AR

q2 q1
a≈b⇒S→ q2 a transition of B(R) (19)

AR
q � B q a final state of B(R) (20)

where the condition a ≈ b in axioms (19) can be omitted if it is not given. The
resulting SROIQ≈ ontology still contains axioms with preconditions a ≈ b,
but no more ◦. Every normalised SROIQ axiom α can be translated into a
C2 formula c2(α) as shown in [12, Table 1]. A SROIQ≈ axiom of the form
a ≈ b ⇒ α accordingly can be translated as (∃=1x.Aa(x)∧Ab(x)) → c2(α). This
completes the proof of Theorem 11.

We can lift this result to non-ground ontologies without increasing
complexity:

Theorem 12. Satisfiability of SROIQ@ ontologies is N2ExpTime-complete.

Proof. Hardness is immediate given the hardness of SROIQ. The proof of mem-
bership uses the same grounding approach as the proof of Theorem 4, which is
easily seen to be correct. This grounded ontology ground(KB) is exponentially
larger than the input KB, but the regularity conditions for SROIQ@ ensure that
it has the same (linearly bounded) ◦-depth. Moreover, while the transformation
used for axiomatising ground SROIQ@ ontologies is also exponential, it is poly-
nomial in the number of possible ground annotation sets; this number remains
single exponential w.r.t. the size of KB, even when considering ground(KB).
Therefore, we find that the auxiliary SROIQ≈ ontology ground(KB)‡ is still
only exponential w.r.t. KB while having a polynomial ◦-depth. The claimed
complexity therefore follows from Lemma 2. 	


7 Conclusion

Current graph-based knowledge representation formalisms suffer from an inabil-
ity to handle meta-data in the form of sets of attribute–value pairs. These limi-
tations show up even when dealing with purely abstract data and are orthogonal
to datatype support in the formalisms. We therefore believe that KR formalisms
must urgently take up the challenge of incorporating annotation structures into
their expressive repertoire.

Our family of attributed description logics represents a potential solution
in the context of DLs, and covers attributed SROIQ, the DL underlying
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OWL 2 DL. In contrast to our recent findings on rule-based logics support-
ing similar annotations, attributed DLs often incur an increased reasoning com-
plexity due to the open-world nature of DLs. We have presented a grounding-
based decision procedure and identified the special cases of ground ontologies
and structural restrictions on axioms, for which this overhead can be avoided.
In particular, this ensures the tractability of attributed EL.

More work is now needed regarding practical reasoning algorithms in
attributed DLs. We believe that similar approaches to those used for reason-
ing with nominal schemas might be effective here. A related practical issue is
the syntactic integration of the new features in OWL. The existing annotation
mechanism of OWL 2 [17] can be used to store attribute-value sets, e.g., of asser-
tions, but is not general enough to capture our extended syntax for arbitrary
axioms. Finally, there are certainly many further expressive mechanisms related
to modelling with annotations that should be considered and investigated in
future studies of this new field.
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15. Krötzsch, M., Rudolph, S.: Nominal schemas in description logics: Complexities
clarified. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Proceeding of 14th Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR 2014), pp. 308–317. AAAI Press (2014)
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