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Abstract. SPARQL query answering in ontology-based data access
(OBDA) is carried out by translating into SQL queries over the data
source. Standard translation techniques try to transform the user query
into a union of conjunctive queries (UCQ), following the heuristic argu-
ment that UCQs can be efficiently evaluated by modern relational data-
base engines. In this work, we show that translating to UCQs is not
always the best choice, and that, under certain conditions on the inter-
play between the ontology, the mappings, and the statistics of the data,
alternative translations can be evaluated much more efficiently. To find
the best translation, we devise a cost model together with a novel car-
dinality estimation that takes into account all such OBDA components.
Our experiments confirm that (i) alternatives to the UCQ translation
might produce queries that are orders of magnitude more efficient, and
(ii) the cost model we propose is faithful to the actual query evaluation
cost, and hence is well suited to select the best translation.

1 Introduction

The paradigm of Ontology-based Data Access (OBDA) [17] presents to the end-
users a convenient virtual RDF graph [13] view of the data stored in a relational
database. Such RDF graph is realized by means of the TBox of an OWL2 QL
ontology [16] connected to the data source through declarative mappings [7].
SPARQL query answering [10] over the RDF graph is not carried out by actually
materialising the data according to the mappings, but rather by first rewriting
the user query with respect to the TBox, and then translating the rewritten
query into an SQL query over the data.

In state-of-the-art OBDA systems [5], such SQL translation is the result of
structural optimizations, which aim at obtaining a union of conjunctive queries
(UCQ). Such an approach is claimed to be effective because (i) joins are over
database values, rather than over URIs constructed by applying mapping defin-
itions; (ii) joins in UCQs are performed by directly accessing (usually, indexed)
database tables, rather than materialized and non-indexed intermediate views.
However, the requirement of generating UCQs comes at the cost of an exponen-
tial blow-up in the size of the user query.

A more subtle, sometimes critical issue, is that the UCQ structure accen-
tuates the problem of redundant data, which is particularly severe in OBDA
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where the focus is on retrieving all the answers implied by the data and the
TBox: each CQ in the UCQ can be seen as a different attempt of enriching the
set of retrieved answers, without any guarantee on whether the attempt will
be successful in retrieving new results. In fact, it was already observed in [2]
that generating UCQs is sometimes counter-beneficial (although that work was
focusing on a substantially different topic).

As for the rewriting step, Bursztyn et al. [3,4] have investigated a space of
alternatives to UCQ rewritings, by considering joins of UCQs (JUCQs), and
devised a cost-based algorithm to select the best alternative. However, the scope
of their work is limited to the simplified setting in which there are no mappings
and the extension of the predicates in the ontology is directly stored in the data-
base. Moreover, they use their algorithm in combination with traditional cost
models from the database literature of query evaluation costs, which, accord-
ing to their experiments, provide estimations close to the native ones of the
PostgreSQL database engine.

In this work we study the problem of alternative translations in the general
setting of OBDA, where the presence of mappings needs to be taken into account.
To do so, we first study the problem of translating JUCQ rewritings such as those
from [3], into SQL queries that preserve the JUCQ structure while maintaining
property (i) above, i.e., the ability of performing joins over database values,
rather than over constructed URIs. We also devise a cost model based on a
novel cardinality estimation, for estimating the cost of evaluating a translation
for a UCQ or JUCQ over the database. The novelty in our cardinality estimation
is that it exploits the interplay between the components of an OBDA instance,
namely ontology, mappings, and statistics of the data, so as to better estimate
the number of non-duplicate answers.

We carry out extensive and in-depth experiments based on a synthetic sce-
nario built on top of the Winsconsin Benchmark [8], a widely adopted benchmark
for databases, so as to understand the trade-off between a translation for UCQs
and JUCQs. In these experiments we observe that: (i) factors such as the number
of mapping assertions, also affected by the number of axioms in the ontology,
and the number of redundant answers are the main factors for deciding which
translation to choose; (ii) the cost model we propose is faithful to the actual
query evaluation cost, and hence is well suited to select the best alternative
translation of the user query; (iii) the cost model implemented by PostgreSQL
performs surprisingly poorly in the task of estimating the best translation, and
is significantly outperformed by our cost model. The main reason for this is that
PostgreSQL fails at recognizing when different translations are actually equiv-
alent, and may provide for them cardinality estimations that differ by several
orders of magnitude.

In addition, we carry out an evaluation on a real-world scenario based on
the NPD benchmark for OBDA [14]. Also in these experiments we confirm that
alternative translations to the UCQ one may be more efficient, and that the
same factors already identified in the Winsconsin experiments determine which
choice is best.
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The rest of the paper is structured as follows. Section 2 introduces the relevant
technical notions underlying OBDA. Section 3 provides our characterization for
SQL translations of JUCQs. Section 4 presents our novel model for cardinality
estimation, and Sect. 5 the associated cost model. Section 6 provides the eval-
uation of the cost model on the Wisconsin and NPD Benchmarks. Section 7
concludes the paper. Due to space limitation, more details of the techniques,
proofs and experiments are provided in an online report [15]. The materials
to reproduce the experiments are available online (https://github.com/ontop/
ontop-examples/tree/master/iswc-2017-cost).

2 Preliminaries

In this work, we use the bold font to denote tuples (when convenient we might
treat tuples as sets). Given a tuple of function symbols f = (f1, . . . , fn) and of
variables x, we denote by f(x) a tuple of terms of the form (f1(x1), . . . , fn(xn)),
with xi ⊆ x, 1 ≤ i ≤ n. We assume some familiarity with basic notions from
probability calculus and statistics. We rely on the OBDA framework of [17],
which we formalize here through the notion of OBDA specification, which is a
triple S = (T ,M, Σ) where T is an ontology TBox, M is a set of mappings, and
Σ is the schema of a relational database.

We assume that ontologies are formulated in DL-LiteR [6], which is the DL
providing the formal foundations for OWL 2 QL, the W3C standard ontology
language for OBDA [16]. A DL-LiteR TBox T is a finite set of axioms of the
form C � D or P � R, where C, D are DL-LiteR concepts and P , R are
roles, following the DL-LiteR grammar. A DL-LiteR ABox A is a finite set of
assertions of the form A(a), P (a, b), where A is a concept name, P a role name,
and a, b individuals. We call the pair O = (T ,A) a DL-LiteR ontology.

We consider here first-order (FO) queries [1], and we use qD to denote the
evaluation of a query q over a database D. We use the notation qA also for the
evaluation of q over the ABox A, viewed as a database. For an ontology O,
we use cert(q,O) to denote the certain answers of q over O, which are defined
as the set of tuples a of individuals such that O |= q(a) (where |= denotes
the DL-LiteR entailment relation). We consider also various fragments of FO
queries, notably conjunctive queries (CQs), unions of CQs (UCQs), and joins
of UCQs (JUCQs) [1].

Mappings specify how to populate the concepts and roles of the ontology from
the data in the underlying relational database. A mapping m is an expression of
the form L(f(x)) �qm(x): the target part L(f(x)) of m is an atom over function
symbols1 f and variables x whose predicate name L is a concept or role name;
the source part qm(x) of m is a FO query with output variables2 x. We say that

1 For conciseness, we use here abstract function symbols in the mapping target. We
remind that in concrete mapping languages, such as R2RML [7], such function sym-
bols correspond to IRI templates used to generate object IRIs from database values.

2 In general, the output variables of the source query might be a superset of the
variables in the target, but for our purposes we can assume that they coincide.

https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost
https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost
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the signature sign(m) of m is the pair (L, f), and that m defines L. We also
define sign(M) = {sign(m) | m ∈ M}.

Following [9], we split each mapping m = L(f(x)) �qm(x) in M into two
parts by introducing an intermediate view name Vm for the FO query qm(x).
We obtain a low-level mapping of the form Vm(x) �qm(x), and a high-level
mapping of the form L(f(x)) �Vm(x). In the following, we abstract away the
low-level mapping parts, and we consider M as consisting directly of the high-
level mappings. In other words, we directly consider the intermediate view atoms
Vm as the source part, with the semantics V D

m = qD
m, for each database instance

D. We denote by ΣM the virtual schema consisting of the relation schemas
whose names are the intermediate view symbols Vm, with attributes given by
the answer variables of the corresponding source queries.

From now on we fix an OBDA specification S = (T ,M, Σ). Given a database
instance D for Σ, we call the pair (S,D) an OBDA instance. We call the set
of assertions A(M,D) =

{
L(f(a)) | L(f(x)) �V (x) ∈ M and a ∈ V (x)D}

the
virtual ABox exposed by D through M. Intuitively, such an ABox is obtained
by evaluating, for each (high level) mapping m, its source view V (x) over the
database D, and by using the returned tuples to instantiate the concept or role
L in the target part of m. The certain answers cert(q, (S,D)) to a query q over
an OBDA instance (S,D) are defined as cert(q, (T ,A(M,D))).

In the virtual approach to OBDA, such answers are computed without actu-
ally materializing A(M,D), by transforming the query q into a FO query qfo
formulated over the database schema Σ such that qD′

fo = cert(q, (S,D′)), for
every OBDA instance (S,D′). To define the query qfo , we introduce the follow-
ing notions:

– A query qr is a perfect rewriting of a query q′ with respect to a TBox T , if
cert(q′, (T ,A)) = qA

r for every ABox A [6].
– A query qt is an M-translation of a query q′, if qD

t = q′A(M,D) , for every
database D for Σ [17].

Notice that, by definition, all perfect rewritings (resp., translations) of q′ with
respect to T (resp., M) are equivalent. Consider now a perfect rewriting qT of
q with respect to T , and then a translation qT ,M of qT with respect to M. It is
possible to show that such a qT ,M satisfies the condition stated above for qfo .

Many different algorithms have been proposed for computing perfect rewrit-
ings of UCQs with respect to DL-LiteR TBoxes, see, e.g., [6,11]. As for the
translation, [17] proposes an algorithm that is based on non-recursive Data-
log [1], extended with function symbols in the head of rules, with the additional
restriction that such rules never produce nested terms. We consider Datalog
queries of the form (G,Π), where G is the answer atom, and Π is a set of
Datalog rules following the restriction above. We abbreviate a Datalog query
of the form (q(x), {q(x) ← B1, . . . , Bn}), corresponding to a CQ (possibly with
function symbols), as q(x) ← B1, . . . , Bn, and we also call it q.

Definition 1 (Unfolding of a UCQ [17]). Let q(x) ← L1(v1), . . . , Ln(vn)
be a CQ. Then, the unfolding unf (q,M) of q w.r.t. M is the Datalog query
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(qunf (x),Π), where Π is a (up to variable renaming) minimal set of rules having
the following property:

If ((m1, . . . ,mn), σ) is a pair such that {m1, . . . ,mn} ⊆ M, and

• mi = Li(fi(xi)) �Vi(zi), for each 1 ≤ i ≤ n, and
• σ is a most general unifier for the set of pairs {(Li(vi), Li(fi(xi))) | 1 ≤ i ≤

n},

then the query qunf (σ(x)) ← V1(σ(z1)), . . . , Vn(σ(zn)) belongs to Π.
The unfolding of a UCQ q is the union of the unfoldings of each CQ in q.

It has been proved in [17] that, for a UCQ q, unf (q,M) is an M-translation.

3 Cover-Based Translation in OBDA

We first introduce some terminology from [3], that we use in our technical devel-
opment. Let q be a query consisting of atoms F = {L1, . . . , Ln}. A cover for q
is a collection C = {f1, . . . , fm} of non-empty subsets of F , called fragments,
such that (i)

⋃
fi∈C fi = F and (ii) no fragment is included into another one.

Given a cover C for a query q(x), the fragment query q|f (xf ), for f ∈ C, is the
query whose body consists of the atoms in f and whose answer variables xf are
given by the answer variables x of q that appear in the atoms of f , union the
existential variables in f that are shared with another fragment f ′ ∈ C, with
f ′ �= f . Consider the query qC(x) ←

∧
f∈C qucq|f (xf ), where qucq|f (xf ), for each

f ∈ C, is a CQ-to-UCQ perfect rewriting of the query q|f w.r.t. T . Then qC

is a cover-based JUCQ perfect rewriting of q w.r.t. T and C, if it is a perfect
rewriting of q w.r.t. T .

Authors in [3] have shown that, in DL-LiteR, not every cover leads to a
cover-based perfect rewriting. Thus, they introduced the notion of safe covers,
which are covers that guarantee the existence of a cover-based perfect rewriting.

For the remaining part of the section, we fix a query q(x) and a (safe) cover
C for it, as well as its cover-based JUCQ perfect rewriting qC(x) ←

∧
f∈C qucq|f

w.r.t T and C. We introduce two different characterizations of unfoldings of
qC , which produce M-translations of q. The first characterization relies on the
intuition of joining the unfoldings of each fragment query in qC .

Definition 2 (Unfolding of a JUCQ 1). For each f ∈ C, let Auxf be an
auxiliary predicate for qucq|f (xf ), and let Uf be a view symbol for the unfold-
ing unf (qucq|f (xf ),M), for each f ∈ C. Consider the set of mappings Maux =
{Aux f (xf ) �Uf (xf ) | f ∈ C} associating the auxiliary predicates to the auxil-
iary view names. Then, we define the unfolding unf (qC ,M) of qC with respect
to M as unf (qauxC (x) ←

∧
f∈C Aux f (xf ),Maux ).

Theorem 1 (Translation 1). The query unf (qC ,M) is an M-translation for
qC .
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The above unfolding characterization for JUCQs corresponds to a translation
containing SQL joins over URIs resulting from the application of function sym-
bols to database values, rather than over (indexed) database values themselves
(see [15]). In general, such joins cannot be evaluated efficiently by RDBMSs [19].
We introduce a second, less trivial, unfolding characterization that guarantees
that joins are performed only over database values. For this we first need to
introduce a number of auxiliary notions and results.

Definition 3. Let (L, f) ∈ sign(M) be a signature in M. Then, the restric-
tion M|(L,f) of M w.r.t. the signature (L, f) is the set of mappings M|(L,f) =
{m ∈ M | m = L(f(v)) �V (v)}.

Definition 4 (Wrap). Let M|(L,f) = {L(f(vi)) �Vi(vi) | 1 ≤ i ≤ n} be the
restriction of M w.r.t. the signature (L, f), and f(v) be a tuple of terms over
fresh variables v. Then, the wrap of M|(L,f) is the (singleton) set of mappings
wrap(M|(L,f)) = {L(f(v)) �W (v)} where W is a fresh view name for the Dat-
alog query (W (v), {W (vi) ← Vi(vi) | 1 ≤ i ≤ n}).

The wrap of M is the set wrap(M) =
⋃

(L,f)∈sign(M) wrap(M|(L,f)) of map-
pings.

The wrap operation groups the mappings for a signature into a single map-
ping. We now introduce an operation that splits a mapping according to the
function symbols adopted on its source part.

Definition 5 (Split). Let m = L(x) �U(x) be a mapping where U is the
name for the query (U(x), {U(fi(xi)) ← Vi(xi) | 1 ≤ i ≤ n}). Then, the split of
m is the set split(m) = {L(fi(xi)) �Vi(xi) | 1 ≤ i ≤ n} of mappings. We denote
by split(M) the split of the set M of mappings.

Definition 6 (Unfolding of a JUCQ 2). Let qauxC be a query and Maux a set
of mappings as in Definition 2. Then, the optimized unfolding unfopt(qC(x),M)
of qC w.r.t. M is defined as unf (qauxC (x),wrap(split(Maux ))).

Theorem 2 (Translation 2). The query unfopt(qC ,M) is an M-translation
for qC .

Observe that the optimized unfolding of a JUCQ is a union of JUCQs
(UJUCQ). Moreover, where each JUCQ produces answers built from a single
tuple of function symbols, if all the attributes are kept in the answer. The next
example, aimed at clarifying the notions introduced so far, illustrates these.

Example 1. Let q(x, y, z) ← P1(x, y), C(x), P2(x, z), and consider a cover
{f1, f2} generating fragment queries q|f1 = q(x, y) ← P1(x, y), C(x) and q|f2 =
q(x, z) ← P2(x, z). Consider the set of mappings

M =

⎧
⎨

⎩

P1(f(a), g(b)) �V1(a, b) P1(f(a), g(b)) �V2(a, b)
P1(h(a), i(b)) �V3(a, b) C(f(a)) �V4(a)
P2(f(a), k(b)) �V5(a, b) P2(f(a), h(b)) �V6(a, b)

⎫
⎬

⎭
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Translation I. According to Definition 2, the JUCQ q(x, y, z) ←
q|f1(x, y), q|f2(x, z) can be rewritten as the auxiliary query qaux (x, y, z) =
Aux1(x, y),Aux 2(x, z) over mappings

Maux =
{

Aux 1(x, y) �U1(x, y) Aux2(x, z) �U2(x, z)
}

where U1 is a view name for unf (q|f1(x, y),M) = (U1(x, y),Π1), and
U2 is a view name for unf (q|f2(x, z),M) = (U2(x, z),Π2), such that

Π1 =

{
U1(f(a), g(b)) ← V1(a, b), V4(a)
U1(f(a), g(b)) ← V2(a, b), V4(a)

}
Π2 =

{
U2(f(a), k(b)) ← V5(a, b)
U2(f(a), h(b)) ← V6(a, b)

}

Translation II. By Definition 5, we compute the split of Maux :

split(Maux ) =

{
Aux1(f(a), g(b)) �V1(a, b), V4(a) Aux2(f(a), k(b)) �V5(a, b)
Aux1(f(a), g(b)) �V2(a, b), V4(a) Aux2(f(a), h(b)) �V6(a, b)

}

By Definition 4, we compute the wrap of split(Maux ):

wrap(split(Maux )) =

{
Aux1(f(a), g(b)) �W3(a, b) Aux2(f(a), k(b)) �W4(a, b)

Aux2(f(a), h(b)) �W5(a, b)

}

where W3(a, b), W4(a, b), W5(a, b) are Datalog queries whose programs are
respectively

Π3 =

{
W3(a, b) ← V1(a, b), V4(a)
W3(a, b) ← V2(a, b), V4(a)

} Π4 = {W4(a, b) ← V5(a, b)}
Π5 = {W5(a, b) ← V6(a, b)}

Finally, by Definition 6 we compute the optimized unfolding of qC w.r.t. M:

unfopt(qC(x, y, z), M) = unf (qaux (x, y, z),wrap(split(Maux ))) = (qauxunf (x, y, z), Πunf )

where
Πunf =

{
qauxunf (f(a), g(b), k(b′)) ← W3(a, b), W4(a, b′)
qauxunf (f(a), g(b), h(b′)) ← W3(a, b), W5(a, b′)

}

Observe that unfopt(qC(x, y, z),M) is a UJUCQ. Moreover, each of the two
JUCQs in qauxunf contributes with answers built out of a specific tuple of function
symbols. �

4 Unfolding Cardinality Estimation

For convenience, in this section, we use relational algebra notation [1] for CQs.
To deal with multiple occurrences of the same predicate in a CQ, the corre-
sponding algebra expression would contain renaming operators. However, in our
cardinality estimations we need to understand when two attributes actually refer
to the same relation, and this information is lost in the presence of renaming.
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Instead of introducing renaming, we first explicitly replace multiple occurrences
of the same predicate name in the CQ by aliases (under the assumption that
aliases for the same predicate name are interpreted as the same relation). Specif-
ically, we use alias V[i] to represent the i-th occurrence of predicate name V in
the CQ. Then, when translating the aliased CQ to algebra, we use fully qualified
attribute names (i.e., each attribute name is prefixed with the (aliased) predicate
name). So, to reconstruct the relation name V to which an attribute V[i].x refers,
it suffices to remove the occurrence information [i] from the prefix V[i]. When the
actual occurrence of V is not relevant, we use V[·] to denote the alias.

Moreover, in the following, we consider only the restricted form of CQs, which
we call basic CQs, whose algebra expression is of the form

E = V 0
[·] ��θ1 V 1

[·] ��θ2 · · · ��θn V n
[·] ,

where, the V is denote predicate names, and for each i ∈ {1, . . . , n}, the join
condition θi is of the form V j

[·].x = V i
[·].y, for some j < i. Arbitrary CQs, allowing

for projections and arbitrary joins, are considered in the extended version of this
work [15].

Given a basic CQ E as above, we denote by E(m), for 1 ≤ m ≤ n, the sub-
expression of E up to the m-th join operator, namely E(m) = V 0

[·] ��θ1 V 1
[·] ��θ2

· · · ��θm
V m

[·] .
In the following, in addition to an OBDA specification, we also fix a database

instance D for Σ. We use V and W to denote relation names (with an associated
relation schema) in the virtual schema MΣ , whose associated relations consist of
(multi)sets of labeled tuples (see the named perspective in [1]). Given a relation S,
we denote by |S| the number of (distinct) tuples in S, by πL(S) the projection of
S over attributes L (under set-semantics), and by πL1(S1)� πL2(S2) intersection
of relations disregarding attribute names, i.e., πL1(S1) ∩ ρL2 �→L1(πL2(S2)). We
also use the classical notation P (α) to denote the probability that an event α
happens.

Background on Cardinality Estimation. We start by recalling some assump-
tions that are commonly made by models of cardinality estimation proposed
in the database literature (e.g., see [20]): (i) For each relation column C, val-
ues are uniformly distributed across C; intuitively, for a column C of integers,
P (C < v) = (v − min(C))/(max(C) − min(C)), for each value v ∈ C. (ii) There
is a uniform distribution across distinct values, i.e., P (C = v1) = P (C = v2), for
all values v1, v2 ∈ C. (iii) The distributions in different colums are independent,
i.e., P (C1 = v1|C2 = v2) = P (C1 = v1), for all values v1 ∈ C1 and v2 ∈ C2.
(iv) Columns in a join condition match “as much as possible”, i.e., given a join
V ��x=y W , it is assumed that |πx(V D)� πy(WD)| = min(|πx(V )|, |πy(W )|).

Given the assumptions, the cardinality of a join V ��x=y W is estimated [21]
as:

kD(V ��x=y W ) · |V D|/distD(V,x) · |WD|/distD(W,y) (1)

where kD is an estimation of the number of distinct values satisfying the
join condition (i.e., kD estimates |πx(V D)� πy(WD)|, and distD(V,x) (resp.,
distD(W,y)) corresponds to the estimation of |πx(V D)| (resp., |πy(WD)|), both
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calculated according to the aforementioned assumptions. Note that the fractions
such as |V D|

distD(V,x) estimate the number of tuples associated to each value that
satisfies the join condition.

Of the assumptions (i)–(iv) above, we maintain only (ii) and (iii) in our car-
dinality estimator, while we drop (i) and (iv) due to the additional information
given by the structure of the mappings. In the following, we will show how even
under these conditions we can use Formula (1), to estimate the cardinality of
conjunctive queries.

Basic CQ Cardinality Estimation. We first generalize Formula (1) to basic
CQs.

Cardinality Estimator. Given a basic CQ E′, fD(E′) estimates the number |E′D|
of distinct results in the evaluation of E′ over D. We define it as

fD(E ��V[p].x= W[q].y W[q]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌈
kD(V[p] ��V[p].x= W[q].y W[q]) · |V D| · |W D|

distD(V, V[p].x) · distD(W, W[q].y)

⌉

, if E = V

⌈
kD(E ��V[p].x= W[q].y W[q]) · fD(E) · |W D|

distD(E, V[p].x) · distD(W, V[p].y)

⌉

, otherwise.

(2)

Our cardinality estimator exploits assumptions (ii) and (iii) above, and relies
on our definitions of the facing values estimator kD and of the distinct values
estimator distD, which are based on additional statistics collected with the help
of the mappings, instead of being based on assumptions (i) and (iv), as in For-
mula (1).

Facing Values Estimator. Given a basic CQ E′ = E ��V[p].x=W[q].y W[q], the
estimation kD(E′) of the cardinality |πV.x(ED)� πW.y(WD)| is defined as

kD(E ��V[p].x=W[q].y W[q]) =

⎧
⎨

⎩

|πx(V D)�πy(W D)|, if E = V
⌈

|πx(V
D)�πy(W

D)| · distD(E, V[p].x)

distD(V, V[p].x)

⌉

, otherwise,
(3)

where |πx(V D)� πy(WD)| is assumed to be a statistic available after having ana-
lyzed the mappings together with the data instance. The fraction distD(E,V[p].x)

distD(V,V[p].x)

is a scaling factor relying on assumption (ii).

Distinct Values Estimator. Let Q be a set of qualified attributes, and
E be basic CQ. We define the set ea(E,Q) of equivalent attributes
of Q in E as

⋃
i>0 Ci, where (i) C1 := {Q} (ii) Cn+1 := Cn ∪

{Q′ | ∃Q′′ ∈ Cn s.t. Q′ = Q′′ or Q′′ = Q′ is a join condition in E}, n ≥ 1. Given
a basic CQ E and a set V[p].x of qualified attributes, the expression se(E, V[p].x)
denotes the longest sub-expression E(n) in E, for some n > 1, such that
E(n) = E(n−1)

��W[q].y=U[r].z U[r], for some relation name W , tuples of attributes
y and z such that U[r].z ∈ ea(E, V[p].x), if E(n) exists, and ⊥ otherwise. For
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E and V[p].x, the estimation distD(E, V[p].x) of the cardinality |πV[p].x(ED)| is
defined as

distD(E, V[p].x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|πx(V D)|, if E = V

min

{⌈

kD(E′) · fD(E)

fD(E′)

⌉

, kD(E′)
}

, if se(E, V[p].x) = E′ �= ⊥

min

{⌈

|πx(V
D)| · fD(E)

|V D|
⌉

, |πx(V
D)|
}

, otherwise.

(4)

where |πx(V D)| is assumed to be a statistic available after having analyzed the
mappings together with the data instance. Observe that the fractions fD(E)

fD(E′) and
fD(E)
|V D| are again scaling factors relying on assumption (ii). Also, distD(E, V.x)

must not increase when the number of joins in E increases, which explains the
use of min for the case where the number of distinct results in E increases with
the number of joins.

Fig. 1. Data instance D.

Example 2. Consider the data instance D from Fig. 1. Relevant statistics are:

– |TD
1 | = 5, |TD

2 | = |TD
3 | = 10

– |πa(TD
1 )| = |πd(TD

2 )| = 5, |πc(TD
2 )| = |πf(TD

3 )| = |πe(TD
3 )| = 10,

– |πa(TD
1 )� πc(TD

2 )| = 3, |πd(TD
2 )� πe(TD

3 )| = 5, |πa(TD
1 )� πf(TD

3 )| = 1.

We calculate fD(E) for the basic CQ E = T1 ��T1.a=T2.c T2 ��T2.d=T3.e

T3 ��T1.a=T ′
3.f T ′

3, where T ′
3 is an alias (written in this way for notational con-

venience) for the table T3. To do so, we first need to calculate the estimations
fD(E(1)) and fD(E(2)).

fD(E(1)) = fD(T1 ��T1.a=T2.c T2) =

⌈
kD(T1 ��T1.a=T2.c T2) · |T D

1 | · |T D
2 |

distD(T1, a) · distD(T2, c)

⌉

=

⌈ |πa(T
D
1 ) � πc(T

D
2 )| · |T D

1 | · |T D
2 |

|πa(T D
1 )| · |πc(T D

2 )|
⌉

= �(3 · 5 · 10)/(5 · 10)� = 3

fD(E(2)) = fD(E(1)
��T2.d=T3.e T3) =

⌈
kD(E(1)

��T2.d=T3.e T3) · fD(E(1)) · |T D
3 |

distD(E(1), T2.d) · distD(T3, e)

⌉

(5)
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By Formula (4), distD(E(1), T2.d) in Formula (5) can be calculated as

distD(E(1), T2.d) = min
{⌈

|πd(TD
2 )|

|TD
2 | · fD(E(1))

⌉
, |πd(TD

2 )|
}

= min
{⌈

5
10

· 3
⌉

, 5
}

=
⌈

3
2

⌉
= 2

By Formula (3), kD(E(1)
��T2.d=T3.e T3) in Formula (5) can be calculated as

kD(E(1)
��T2.d=T3.e T3) =

⌈
kD(T2 ��T2.d=T3.e T3)

distD(T2,d)
· distD(E(1), T2.d)

⌉

=

⌈
|πd(T

D
2 )�πe(T D

3 )|
|πd(T

D
2 )| · distD(E(1), T2.d)

⌉

=

⌈
5

5
· 2
⌉

= 2

By plugging the values for kD and distD in Formula (5), we obtain

fD(E(2)) = 
(2 · 3 · 10)/(2 · 10)� = 3

We are now ready to calculate the cardinality of E, which is given by the formula

fD(E) = fD(E(2)
��T1.a=T ′

3.f T ′
3) =

⌈
kD(E(2)

��T1.a=T ′
3.f T ′

3) · fD(E(2)) · |TD
3 |

distD(E(2), T1.a) · distD(T3, f)

⌉

(6)

By Formula (4), distD(E(2), T1.a) in Formula (6) can be computed as

distD(E(2), T1.a) = min

{⌈
kD(E(1))

fD(E(1))
· fD(E(2))

⌉

, kD(E(1))

}

= min

{⌈
3

3
· 3
⌉

, 3

}

= 3

Then, by Formula (3), kD(E(2)
��T1.a=T ′

3.f T ′
3) in Formula (6) can be computed

as

kD(E(2)
��T1.a=T ′

3.f T ′
3) =

⌈
kD(T1 ��T1.a=T ′

3.f T ′
3)

distD(T1, a)
· distD(E(2), T1.a)

⌉
=

⌈
3

5

⌉
= 1

By plugging the values for kD and distD in (6), we finally obtain

fD(E) = 
(1 · 3 · 10)/(3 · 10)� = 1

Observe that, in this example, our estimation is exact, that is, fD(E) = |ED|. �

Collecting the Necessary Statistics. The estimators introduced above
assume a number of statistics to be available. We now show how to compute
such statistics on a data instance by analyzing the mappings. Consider a set
of mappings M = {Li(fi(vi)) �Vi(vi) | 1 ≤ i ≤ n} and a data instance D. We
store the statistics:



Cost-Driven Ontology-Based Data Access 463

S1 |V D
i |, for each i ∈ {1, . . . , n};

S2 |πx(V D
i )|, if f(x) is a term in fi(vi), for some function symbol f and i ∈

{1, . . . , n};
S3 |πx(V D

i )� πy(V D
j )|, if f(x) is a term in fi(vi), and f(y) is a term in fj(vj),

for some function symbol f and i, j ∈ {1, . . . , n}, i �= j.

Statistics S1 and S2 are required by all three estimators that we have introduced,
and can be measured directly by evaluating source queries on D. Statistics S3

can be collected by first iterating over the function symbols in the mappings,
and then calculating the cardinalities for joins over pairs of source queries whose
corresponding mapping targets have a function symbol in common. It is easy to
check that Statistics S1–S3 suffice for our estimation, since all joins in a CQ are
between source queries, and moreover, every translation calculated according to
Definition 1 contains only joins between pairs of source queries considered by
Statistics S3.

Unfolding Cardinality Estimator. We now show how to estimate the car-
dinality of an unfolding by using the Formulas (2), (3), and (4) introduced for
cardinality estimation. The next theorem shows that such estimation can be cal-
culated by summing-up the estimated cardinalities for each CQ in the unfolding
of the input query, provided that (i) the unfolding is being calculated over wrap
mappings, and (ii) the query to unfold is a CQ.

Theorem 3. Consider a CQ q(x) ← L1(v1), . . . , Ln(vn) such that x =
⋃n

i=1 vi.
Then

|unf (q(x), M)D| =
∑

qu∈unf (q,wrap(M))

|qu(x)D|

The previous theorem states that the cardinality of the unfolding of a query
over a wrap mapping corresponds to the sum of the cardinalities of each CQ
in the unfolding, under the assumption that all the attributes are kept in the
answer. Intuitively, the proof [15] relies on the fact that, when wrap mappings are
used, each CQ in the unfolding returns answer variables built using a specific
combination of function names. Hence, to calculate the cardinality of a CQ
q, it suffices to collect statistics as described in the previous paragraph, but
over wrap(M) rather than M, and sum up the estimations for each CQ in
unf (q,wrap(M)).

The method above might overestimate the actual cardinality if the input
CQ contains non-answer variables. In [15] we show how to address this limita-
tion by storing, for each property in the mappings, the probability of having
duplicate answers if the projection operation is applied to one of the (two) argu-
ments of that property. Also, the method above assumes a CQ as input to the
unfolding, whereas a rewriting is in general a UCQ. This is usually not a criti-
cal aspect, especially in practical applications of OBDA. By using saturated (or
T-)mappings [18] MT in place of M, in fact, the rewriting of an input CQ q
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almost always [12] coincides with q itself3. Hence, in most cases we can directly
use in Theorem 3 the input query q, if we use wrap(MT ) instead of wrap(M).
A fully detailed example on how this is done is provided in [15].

5 Unfolding Cost Model

We are now ready to estimate the actual costs of evaluating UJUCQ and UCQ
unfoldings, by exploiting the cardinality estimations from the previous section.
Our cost model is based on traditional textbook-formulae for query cost estima-
tion [20]. We here provide the high-level view of the cost model, and leave the
details in [15].

Cost for the Unfolding of a UCQ. Recall from Sect. 3 that the unfolding
of a UCQ produces a UCQ translation qucq =

∨
i qcqi . We estimate the cost of

evaluating qucq as
c(qucq) =

∑
i c(qcqi ) + cu(qucq)

where

– c(qcqi ) is the cost of evaluating each qcqi in qucq ;
– cu(qucq) is the cost of removing duplicate results.

Cost for the Unfolding of a JUCQ. Recall from Sect. 3 that the optimized
unfolding of a JUCQ produces a UJUCQ. We estimate the cost of a single JUCQ
qjucq =

∧
i qucqi in the unfolding as

c(qjucq) =
∑

i c(qucqi ) +
∑

i�=k cmat(q
ucq
i ) + cmj (q

jucq) + cu(qjucq)

where

– c(qucqi ) is the cost of evaluating each UCQ component qucqi ;
–

∑
i�=k cmat(q

ucq
i ) is the cost of materializing the intermediate results from qucqi ,

where the k-th UCQ is assumed to be pipelined [20] and not materialized;
– cmj (qjucq) is the cost of a merge join over the materialized intermediate

results;
– cu(qjucq) is the cost of removing duplicate results.

The cost for a UJUCQ qujucq =
∨

i qjucq
i , if all the attributes are kept in the

answer, is simply the sum
∑

i c(qjucqi ), since the results of all JUCQs are disjoint
(c.f., Sect. 3). Otherwise, we need to consider the cost of eliminating duplicate
results.

3 Always, if the CQ is interpreted as a SPARQL query and evaluated according to the
OWL 2 QL entailment regime, or if the CQ does not contain existentially quantified
variables.
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6 Experimental Results

In this section, we provide an empirical evaluation that compares unfoldings for
UCQs and (optimized) unfoldings for JUCQs, as well as the estimated costs and
the actual time needed to evaluate the unfoldings. We ran the experiments on
an HP Proliant server with 2 Intel Xeon X5690 Processors (each with 12 logical
cores at 3.47 GHz), 106 GB of RAM and five 1TB 15K RPM HDs. As RDBMS we
have used PostgreSQL 9.6. In the extended version [15] of this work we provide
the material to replicate our experiments.

Wisconsin Experiment. This experiment is based on the Wisconsin Bench-
mark [8], which allows for in-detail analyses w.r.t. parameters such as join selec-
tivities. We created several copies of the Wisconsin table, and populated each
of them with 1M rows. Our test is on 84 queries, instantiations of the following
template:
SELECT DISTINCT * WHERE {?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2; :JjMmRrProp3

?y3}

where j ∈ {5, 10, 15, 20} denotes the selectivity of the join between the first
property and each of the remaining two, expressed as a percentage of the number
of retrieved rows for each mapping defining the property (each mapping retrieves
200 k tuples); m ∈ {1, . . . , 6} denotes the number of mappings defining the prop-
erty (all such mappings have the same signature), and r ∈ {0, . . . ,m−1} denotes
the number of redundant mappings, that is, the number of mappings assertions
retrieving the same results of another mapping definining the property, minus
one.

For each query, we have tested a correspondent cover query of two fragments
f1, f2, where each fragment is an instantiation of the following templates:

f1: SELECT DISTINCT ?x ?y1 ?y2 WHERE { ?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2.
}

f2: SELECT DISTINCT ?x ?y3 WHERE { ?x a :MmRrProp1; ?x :JjMmRrProp3 ?y3. }

We have implemented our cost model in a Python script. For each SPARQL
query, we compute the estimation of the costs of both unfoldings for UCQs and
JUCQs, and evaluate these unfoldings over the PostgreSQL database with a
timeout of 20 min.

In Fig. 2, we present the cost estimation and the actual running time for each
query. We have the following observations:

– In this experiment, for the considered cover, JUCQs are generally faster than
UCQs. In fact, out of the 84 SPARQL queries, only one JUCQ was timed out,
while 16 UCQs were timed out. The mean running time of successful UCQs
and JUCQs are respectively 160 s and 350 s.

– In Fig. 2a, where the fitted lines are obtained by applying linear regression
over successful UCQ and JUCQ evaluations, we observe a strong linear cor-
relation between our estimated costs and real running times. Moreover, the
coefficients (b1 and b0) for UCQs and JUCQs are rather close. This empirically
shows that our cost model can estimate the real running time well.



466 D. Lanti et al.

Fig. 2. Cost estimations vs evaluation running times

– Fig. 2b shows that the PostgreSQL cost model assigns the same estimation to
many queries having different running times. Moreover, the linear regressions
for UCQs and JUCQs are rather different, which suggests that PostgreSQL
is not able to recognize when two translations are semantically equivalent.
Hence, PostgreSQL is not able to estimate the cost of these queries properly.

In Fig. 3, we visualize the performance gain of JUCQs compared with UCQs.
The four subgraphs correspond to four different join selectivities. Each subgraph
is a matrix in which each cell shows the value of the performance gain g =
1 − jucq time/ucq time. When g > 0, we apply the red color; otherwise framed-
blue. These graphs clearly show that when there is a large number of mappings
and there is high redundancy, we have better performance gains. When the
redundancy is low (0 or 1), and the number of mapping axioms is large, the join
selectivity plays an important role in the performance gain, as discussed in [3];
in other cases, the impacts are non-significant.

Fig. 3. Performance gain of JUCQ compared with UCQ
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Figures 4 and 5 report the cardinalities estimated by PostgreSQL divided
by the actual sizes of the query answers for all UCQ and JUCQ queries. For
UCQs, it shows that PostgreSQL normally underestimates the cardinalities, but
it overestimates them when the redundancies are high. As for JUCQS, Post-
greSQL always overestimates the cardinalities, ranging from 40 to 200 K times.
These numbers partially explain why PostgreSQL estimate the costs of both
UCQs and JUCQs so badly in Fig. 2b.

We obtained similar conclusions for a query with four atoms, and a cover of
three fragments. For more details, refer to the extended version [15] of this work.

Fig. 4. UCQs: (PostgreSQL estimated cardinality)/(real cardinality)

Fig. 5. JUCQs: (PostgreSQL estimated cardinality)/(real cardinality)

NPD Experiment. The goal of this experiment is to verify that cost-based
techniques can improve the performance of query answering over real-world
queries and instances. This test is carried on the original real-world instance
(as opposed to the scaled data instances) of the NPD benchmark [14] for OBDA
systems. We pick the three most challenging UCQ queries (namely q6, q11, q12,



468 D. Lanti et al.

Table 1. Evaluation over the NPD benchmark

SPARQL query Unfolding for UCQs Unfolding for JUCQs

Name # Triple patterns time (s) # CQs Time (s) # Frags # CQs

q6 7 2.18 48 1.20 2 14

q11 8 3.39 24 0.40 2 12

q12 10 6.67 48 0.47 2 14

q31 10 54.27 3840 1.58 2 327

and q31) from the query catalog, where q31 is a combination of queries q6 and q9,
created during this work, which retrieves information regarding wellbores (from
q6) and their related facilities (from q9).

In Table 1, we show the evaluation results over the NPD benchmark for UCQs
and JUCQs. The unfoldings for JUCQs are constructed using cover queries of
2 fragments, each guided by our cost model. We observe that the sizes of the
unfoldings for JUCQs, measured in number of CQs, are sensibly smaller than
the size of the unfoldings for UCQs. Finally, we observe that the unfoldings for
the JUCQ version of the considered queries improve the running times up to a
factor of 34.

7 Conclusion and Future Work

In this paper, we have studied the problem of finding efficient alternative trans-
lations of a user query in OBDA. Specifically, we introduced a translation for
JUCQ queries that preserves the JUCQ structure while maintaining the possi-
bility of performing joins over database values, rather than URIs constructed
by applying mappings definitions. We devised a cost model based on a novel
cardinality estimation, for estimating the cost of evaluating a translation for a
UCQ or JUCQ over the database. We compared different translations on both
a synthetic and fully customizable scenario based on the Wisconsin Benchmark
and on a real-world scenario from the NPD Benchmark. In these experiments we
have observed that (i) our approach based on JUCQ queries can produce trans-
lations that are orders of magnitude more efficient than traditional translations
into UCQs, and that (ii) the cost model we devised is faithful to the actual query
evaluation cost, and hence is well suited to select the best translation.

As future work, we plan to implement our techniques in the state-of-the-art
OBDA system Ontop and to integrate them with existing optimization strate-
gies. This will allow us to test our approach in more and diversified settings. We
also plan to explore alternatives beyond JUCQs. Finally, we plan to work on the
problem of relaxing the uniformity assumption made in our cost estimator, by
integrating our model with existing techniques based on histograms.
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